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INTRODUCTION

In the second half of the 20th century, the emergence of

information and communications technology and computer

science ushered in a revolution that continues to provide society

with technological advances. These advances have also greatly

benefited the field of cardiology.

This revolution is far from over, and it continuously produces

innovations that make it vitally important to keep up to date

because of their disruptive potential. This article reviews the

current panorama regarding the most recent technological

advances in computer science and information technology that

are affecting the world of cardiology. We have collected the most

recent and significant examples of these advances and have

created a concept map that classifies them into 5 main categories

(figure 1): a) signal and image processing; b) artificial intelligence

(AI) and big data; c) new devices; d) smart hospitals; and

e) systems medicine.
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A B S T R A C T

Technological progress in medicine is constantly garnering pace, requiring that physicians constantly

update their knowledge. The new wave of technologies breaking through into clinical practice includes

the following: a) mHealth, which allows constant monitoring of biological parameters, anytime,

anyplace, of hundreds of patients at the same time; b) artificial intelligence, which, powered by new deep

learning techniques, are starting to beat human experts at their own game: diagnosis by imaging or

electrocardiography; c) 3-dimensional printing, which may lead to patient-specific prostheses;

d) systems medicine, which has arisen from big data, and which will open the way to personalized

medicine by bringing together genetic, epigenetic, environmental, clinical and social data into complex

integral mathematical models to design highly personalized therapies. This state-of-the-art review aims

to summarize in a single document the most recent and most important technological trends that are

being applied to cardiology, and to provide an overall view that will allow readers to discern at a glance

the direction of cardiology in the next few years.
�C 2020 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.
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R E S U M E N

La continua progresión tecnológica que experimenta la medicina se produce cada vez a mayor velocidad,

lo que exige una actualización constante del profesional de la salud. La nueva ola de tecnologı́as que está

abriéndose camino en la práctica clı́nica incluye: a) salud asistida por el móvil (mHealth) o dispositivos

miniaturizados que permiten la detección constante de parámetros biológicos, a cualquier hora y en

cualquier lugar, de cientos de miles de pacientes a la vez; b) inteligencia artificial impulsada por nuevas

técnicas de aprendizaje profundo que están batiendo a médicos expertos en su propio campo (pruebas de

imagen o electrocardiografı́a); c) impresión tridimensional que permite vislumbrar un mundo

de prótesis cardiovasculares adaptadas a cada paciente; d) medicina de sistemas, que apoyándose

en el big data abrirá las puertas a la medicina personalizada, aunando en modelos matemáticos de gran

complejidad datos genéticos, epigenéticos, ambientales, clı́nicos y sociales para diseñar tratamientos de

precisión. Esta revisión pretende resumir la evidencia sobre los últimos avances tecnológicos basados en

tecnologı́as de la información y ciencias de la computación aplicados a la cardiologı́a y esbozar un mapa

que de un solo vistazo permita tener una impresión general del horizonte hacia el que va a progresar la

cardiologı́a en los próximos años.
�C 2020 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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SIGNAL AND IMAGE PROCESSING

Advances in computer science are leading to continual

improvements in medical imaging sensors and instruments. These

devices are of immense usefulness, despite their being the most

continuous and least disruptive example of technological progress.

Manufacturers incorporate many of these advances into patent-

protected devices. The literature is also replete with applications in

several areas (figure 2):

� Electrophysiology: new algorithms improve implanted devices:

for example, by reducing inappropriate shocks1 or by eliminating

artifacts produced by cardiopulmonary resuscitation move-

ments in the electrocardiogram (ECG) signals from automatic

defibrillators.2

� Noninvasive imaging: new techniques allow measurements to

be conducted automatically or semiautomatically rather than by

hand, thereby significantly reducing the amount of time needed

by a human operator. For example, the parameters needed

to plan the percutaneous implantation of a prosthesis3 or to

segment the left atrial appendage4 can be identified up

to 100 times faster under computed tomography (CT).

� Interventional cardiology: an example is provided by calculation

of the quantitative flow ratio, which is a functional estimation of

coronary lesions obtained from a 3-dimensional reconstruction

based on angiography without the need for additional measure-

ment procedures.5

ARTIFICIAL INTELLIGENCE AND BIG DATA

Artificial Intelligence (AI) can be a vague concept, but Kaplan’s

definition6 is a good starting point: ‘‘a system’s ability to correctly

interpret external data, to learn from such data, and to use those

learnings to achieve specific goals and tasks through flexible

adaptation‘‘.

Furthermore, there are very many AI-related terms that are

often misleading. These include the following:’’machine learning‘‘,

which is that part of AI used to analyze datasets to draw

conclusions;’’big data‘‘, which, strictly speaking, only refers to

the management and exploitation of large volumes of data, but

which is a task for which AI techniques are often currently

used; or’’deep learning‘‘, which is a subset of machine learning

techniques that focus on learning from large volumes of data.

AI typically requires more system resources than other

computing techniques. However, it obtains very good results in

many fields and very powerful computers are currently available

that can handle these additional processing loads.

The application of AI to cardiology is already a fact, as described

by Dorado-Dı́ez et al.7 in their review that classified different uses

by areas of cardiology. In the present article, we group these uses

according to the functions conducted by AI in order to offer an

overview of its potential contribution regardless of specialty

(figure 2).

Big data and imaging techniques in cardiology

AI techniques are particularly well suited to cardiac imaging

because of the large volume of structured data that is stored in the

images. There are many illustrative examples,8,9 of which we

highlight the following: an algorithm to measure epicardial

adipose tissue on CT10 reduces analysis time from 10 minutes to

26 seconds, and provides high correlations with human experts

(R = 0.92); a system to calculate the volume of myocardial fibrosis

on magnetic resonance imaging (MRI) at 0.15 s per Image11

showed a high correlation with human experts (R = 0.88); and an

algorithm for automatic calcium scoring in CT has been applied to

7240 heterogeneous studies.12

The challenge of the automated segmentation of cardiac

structures has attracted strong interest. Correlations between

some MRI algorithms and human experts have reached 0.98 for

some specific tasks,13 and fully automated segmentation in MRI is

a real possibility in the near future. Echocardiography is a more

complex challenge, but it is also producing spectacular results,

such as the 3-dimensional segmentation system of the left

ventricle proposed by Dong et al.14

Computer-aided diagnosis

The most natural application of AI is likely to be computer-

aided diagnosis (CAD), which is understood as the identification of

diseases with minimal supervision by human physicians. The first

forays into CAD systems were attempted a few decades ago. They

were deterministic systems that applied expert knowledge (ie,

rules written by physicians), and until the 1990s the general

consensus was that these automated systems were expensive,

complex, and produced poor results.15,16

In contrast to this approach, modern systems use machine

learning: the system is trained by presenting it with a series of

cases with known diagnoses, so that the algorithm learns the

characteristics of different groups without human operators

necessarily having to know them. Once trained, the system can

search for the learned parameters in cases with an unknown

diagnosis. The major advantage of AI is that it can identify complex

mathematical relationships between parameters, which otherwise

would be very difficult for humans to identify with the naked eye.

Current CAD systems are already in a position to compete with

human physicians. CAD systems have already been successful in

various areas of medicine: for example, there are some CAD

systems that are better than expert dermatologists at identifying

tumors in photographs of skin lesions17 or better than expert

ophthalmologists at detecting urgent retinal conditions.18

In the field of cardiology, computational techniques have been

successfully applied to processing ECG signals. For example, the
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Figure 1. Concept map of the latest advances in information technology and

computer science as applied to cardiology. AI, artificial intelligence.
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arrival of AI has led to the development of a spectacular system

that can detect patients with atrial fibrillation (AF) by analyzing

just 10 seconds of a standard ECG during sinus rhythm.19

Furthermore, AI-based solutions have improved the performance

of current tools20: for example, in 1 study, ambulatory single-lead

ECG monitoring devices identified 12 types of arrhythmias with 6%

greater accuracy than a panel of 3 experts.21

In the field of image processing, algorithms have been

developed that can achieve 93% accuracy in the diagnosis of acute

myocardial infarction on CT,22 obtain results comparable to those

of experts and better than those of interns when detecting regional

wall motion abnormalities on ECG,23 or detect chronic myocardial

infarction on MRI with a sensitivity and specificity of 90% and

99%, respectively.24 We highlight the very thorough work of

Zhang et al.,25 who obtained excellent results in the diagnosis

of hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmo-

nary arterial hypertension. Litjens et al.26 made an exhaustive

review of more than 80 different techniques for automated

cardiovascular image analysis.

Most CAD tools have the following characteristics:

� The AI performs very specific tasks using highly specific data,

and it is rare to find tools that integrate several different data

sources or that are able to conduct general diagnoses. Some18

AIs can surpass experts when interpreting a specific test, but

experts perform better than AIs when other general data are

included, such as the patient’s medical history.

� It is clear that there is a very long way to go before AIs can

replace human physicians. However, there is room for AI tools in

current clinical practice. These include the following:

a. Assistance tools that save time when conducting specific simple

and repetitive tasks.

b. Triage tools that provide an initial classification in the setting of

primary care and reduce specialist workload.

c. New improved diagnostic tools: for example, algorithms to

process the ECG to improve the use of N-terminal prohormone

of brain natriuretic propeptide (NT-proBNP) in the diagnosis of

ventricular dysfunction.27

The Watson system (IBM, United States) is notable example of

AI causing controversy relating to general diagnosis. This system

has been applied to cancer diagnosis and treatment recommenda-

tions. Although studies have shown promising results with up to

93% consensus with experts,28 the system has also received

substantial criticism from both inside29 and outside30 the scientific

community. The accuracy of these figures has been challenged,

including internal reports from IBM on cases in which the AI

recommended inappropriate or dangerous treatments.

� At best, AI is only as good as the data it learns from. This means

that any bias in the group of training cases will be reproduced in

the final result.

� For this reason, great care must be taken when interpreting the

accuracy of the results reported in the literature and equal care

Figure 2. Concept map of advances in image and signal processing, artificial intelligence (AI), and big data. The literature references to each concept are indicated

with superscript numbers. CAD, computer-aided diagnosis; CT, computed tomography; ECG, electrocardiogram; MRI, magnetic resonance imaging.
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taken when examining the validation data. For example, very

high accuracy may be distorted by selection bias caused by

including cases with low diagnostic difficulty in the validation

process.

In a meta-analysis, Liu et al.31 compared 82 articles published

up to 2019 which addressed human experts vs CAD imaging

systems. They suggested that although the current accuracy of

automated diagnostic systems may be equivalent to that of health

care professionals, caution is still required regarding validation

methods and the data used.

Finally, it should be noted that these AI applications are not

limited to the research field, but are making their way into routine

clinical practice. By 2019, the Food and Drug Administration had

approved over 30 AI-based applications and systems for clinical

use.32 Without doubt, one of the most popular is the KardiaMobile

device (AliveCor, United States), which was approved by this

agency for the detection of AF33 (figure 3).

Epidemiology and risk assessment

Risk assessment is a common practice that establishes patient

prognosis and identifies the possible consequences of various

treatment options. Traditionally, risk scores have been calculated

using statistical tools. In this field, the application of AI follows a

similar method34 in that a mathematical model is constructed in

which input variables are related to the output variable to be

predicted. However, AI has a fundamental advantage: more

complex relationships can be detected by AI than by commonly

used statistical tools, thus leading to more accurate predictions.

The literature has already presented solid evidence in favor of

these AI algorithms. For example, in the setting of coronary heart

disease, it has been shown that some risk scores created by AI

algorithms provide greater prognostic accuracy (up to 25%

improvement) than current statistical methods.35,36 Currently,

there is no conclusive AI-based risk score for AF. Given the

relevance of AF, there is a need for more studies on this issue,37

such as those already successfully conducted in small cohorts.38,39

In light of these results, the following conclusions can be

summarized:

� AI has enormous potential to predict risk and it has been shown

that it can strongly outperform traditional methods.

� The main disadvantage of AI-generated models is that they are

not directly interpretable, unlike mathematical/statistical mod-

els.

� However, like statistical models, AI models are only as good as

the data used to construct them and can incorporate any existing

bias.

� The greater complexity of AI means that it typically requires

more data to obtain good results. AI can identify information that

is missed by other methods, but it cannot ‘‘work magic’’ and

extract information that is not in the dataset.40 Therefore, if the

dataset is too simple, only marginal improvements can

be obtained with AI over statistical approaches.41 Moreover, as

shown by Hernandez-Suarez et al.,42 AI can be less accurate in

the prediction of mortality after transcatheter aortic valve

replacement.

Phenotype mapping

Phenotype mapping is one of the most disruptive applications

of AI. When studying a disease, the patients’ characteristics

are usually analyzed in order to classify them into different

phenotypes corresponding to subdivisions or stages. Subsequently,

each phenotype is studied individually. AI provides highly detailed

and accurate phenotyping and can take into account parameters

that no human researcher would be able to correlate. The price is

having to accept that a calculator that performs difficult-to-

understand operations will determine patient classifications.

The foremost example of this approach is provided in the study

by Shah et al.43 Using AI techniques, these authors were able to

find 3 phenotypes clearly differentiated by their prognosis and

mortality rates for heart failure with preserved ejection fraction,

which is a heterogeneous and elusive entity. This result represents

a giant step forward in patient stratification and in establishing

optimal treatments for each group.

This approach is particularly useful in the field of imaging. The

number of imaginable radiological parameters is very large.

Several algorithms are able to extract their own parameters from

image analysis to subsequently identify groups of patients with

similar parameters and better predict their progress. Examples

include ventricular hypertrophy on CT,44 cardiovascular risk

5 years after a coronary CT scan,45 or pulmonary hypertension

on MRI.46

The use of these analytic techniques is essential if cardiology is

to harness the full power of the’’omics’’ sciences (ie, genomics,

proteomics, etc).47 Incorporating such data into the cardiovascular

clinical process would usher in a new era of diagnostic and

therapeutic accuracy and facilitate the identification of metabolic

circuits and physiological causes.48

Natural language processing

Despite the general trend toward building databases with more

complex structures, much of the current information related

to medical practice exists as free-form text in medical records.

Fortunately, a field of AI known as natural language processing is

capable of analyzing such information and extracting meaningful

information.

Some AI applications can analyze medical histories to predict

risk,49 while others extract and classify symptoms to categorize

patients.50 In the field of cardiology, there are 2 interesting

examples. The first is an algorithm that can surpass the predictive

value of surveys and procedure codes in the identification of

sudden cardiac death risk factors in hypertrophic heart disease.51

The second can detect the presence of MRI-incompatible

implanted devices with an accuracy of 91%.52

Although a variety of real -world and successful clinical

applications are currently available in other fields, natural

language processing is still in the process of leaving the research

environment.Figure 3. KardiaMobile device (AliveCor, United States).
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NEW DEVICES

Up to this point, we have mainly presented the latest trends in

software. In this section, we will present new developments in the

field of hardware (figure 4).

mHealth

Mobile health, or mHealth, is understood as the use of mobile

devices and sensors to facilitate constant and ubiquitous health

care. Smart devices provide first-line care 24 hours a day,

travel with patients wherever they go, and can conduct health

monitoring tasks without human intervention. Smart devices

include medical devices such as implantable defibrillators, but

also include mobile phones, watches, clothing, and small sensors

that can be carried at all times. Such devices have become very

popular and can be used as follows:

� Continuously monitor and communicate with patients.

� Facilitate patients’ involvement in their own treatment.

� Monitor large populations.

For example, in the treatment of AF, some intelligent devices

can detect episodes in at-risk patients with more than 90%

accuracy.33,53 It has been shown that constant monitoring and

communication through a mobile platform improves adherence,

satisfaction with anticoagulants, and overall quality of life.54

There are also prototype applications on online platforms and

smartphones for cardiac rehabilitation showing demonstrat-

ed improvements in functional capacity, oxygen consumption,

and long-term exercise habits.55–57

Furthermore, mHealth is ideal for mass monitoring in the

promotion of healthy lifestyles58 or for the detection of potentially

dangerous arrhythmias.59 However, these large-scale applications

probably require larger trials.

Many mHealth solutions are currently in the early stages of

development, but despite their enormous potential, caution should

still be exercised. Some trials have been unable to demonstrate the

potential benefits of some platforms.60 However, some of these

studies have marked methodological limitations, such as the use of

short follow-up times or elderly populations.

Robotics

One of the most disruptive trends is probably the robotization

of cardiac intervention. The da Vinci robot (Abex, Spain) has been

shown to have advantages over conventional techniques in a range

of surgical settings, including cardiac surgery.61 In atrial septal

defect closure, the results obtained with this device are similar to

those of conventional techniques.62

Robotic-assisted percutaneous coronary intervention (PCI) has

been shown to be noninferior to manual PCI,63 while providing

some advantages.64 These include a lower incidence of dilatation

beyond the edges of the stent,65 the ability to conduct interven-

tions remotely,66 and exposure to up to 95% less radiation,67which

also reduces ergonomic issues caused by the weight of protective

gear.

In the future, AI-integrated robots are expected to be able to

offer advanced assistance during this procedure, early alerts on

possible complications, and automated smart movements.68

Nevertheless, there are still substantial limitations, such as

incompatibilities with cardiac catheterization equipment, hin-

drances to conducting complex interventions, and the need for

manual arterial access.64

Three-dimensional printing

Three-dimensional printed volumetric models based on imag-

ing tests of real patients allow physicians to examine specific

anatomies with their own hands (figure 5). This approach has

multiple applications69:

� Preparation and planning of interventions.70,71

� Selection of optimal devices for specific anatomies.72

� Teaching.

� Testing of new devices.

Although some reports on this topic exist,73,74 studies with

large numbers of patients are needed to determine the advantages

of 3 D printing as part of routine clinical practice In the future, 3 D

printed biomaterials could be used to produce personalized

prostheses, such as coronary stents75 or perfusable and vascular-

ized cardiac patches.76

Virtual and augmented reality

Virtual reality (VR) immerses users in a 3-dimensional

computer-generated world through headsets that are fitted with

position and movement sensors. In contrast, augmented reality (AR)

uses smartglasses with transparent screens on which additional

information is projected in order to enrich the users’ vision of

the real world. Although VR technology is already at an advanced

stage, AR technology is still in an experimental stage. HoloLens

smartglasses (Microsoft, United States) are the most popular device,

but are expensive and relatively unknown (figure 6).

The application of both technologies to cardiology addresses

4 main aspects77:

� Simulation-based teaching.78

� Rehabilitation.

� Preprocedural planning.79

� Assisting interventional specialists during procedures by inte-

grating 3 D reconstructions of anatomical structures as guides to

ablation80 or during structural procedures.81

Although these examples are anecdotal, these types of device

are expected to become integrated into standard practice after

their gradual launch onto the market. For example, in 2019, Philips

introduced a system that integrates its Azurion angiography

system with HoloLens smartglasses.

THE SMART HOSPITAL

A very complex challenge is managing the myriad processes in

hospital health care. New technologies (figure 4) can also assist

in this field by providing tools to automatically optimize the way

work, resources, time, and personnel are organized and to facilitate

the flow of information between all those involved in health care,

including patients, hospital staff, physicians, and so on.

The implementation of these management tools is known as the

smart hospital, which is a model for the future in which all processes

are monitored and digitally optimized. The literature offers many

examples, such as algorithms to organize operating rooms, wards,

and consultations82,83 or to predict the duration of patient stays84

and daily admissions for cardiorespiratory problems.85

SYSTEMS MEDICINE

Systems medicine (figure 4) is the integration of genetic,

molecular, cellular, and systemic mathematical models, as well as

C. Baladrón et al. / Rev Esp Cardiol. 2021;74(1):81–89 85



Figure 4. Concept map of advances in systems medicine, smart hospitals, and new devices. The literature references to each concept are indicated with superscript

numbers. 3D, 3-dimensional; AF, atrial fibrillation; AI, artificial intelligence.

Figure 5. Images of the process and results of three-dimensional printing based on imaging tests performed on patients.
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mathematical models of tissues and organs, into a single

customizable virtual physiological human model. This model

could be used to predict the specific effects of each intervention on

a given patient, and identify possible crossinteractions in each part

of the patient’s body and each function. Such an approach would be

the definitive form of personalized medicine and is considered by

many to be the next great paradigm shift in medicine.86,87

Although this goal is still a distant one, the first steps have

already been taken, such as the creation of personalized com-

putational models of the heart to estimate the prognosis of patients

who have experienced infarction,88 or to study the genetic,

molecular, and environmental factors that lead to hypertension

in individual patients.89

CONCLUSIONS

We have reviewed a group of technologies with enormous

disruptive potential. Currently, the main highlight is the arrival of

AI and mHealth: after many years of promises, data-based

medicine is now a reality and is already changing the day-to-

day practice of cardiologists. Although it is very unlikely that AI

will suddenly replace cardiologists, it is highly probable that tools

will appear in the short term to automate simple tasks. Specialists

will be relieved of workloads related to repetitive and standard

consultations and thus will be able to concentrate on more

complex cases.

Some technologies appear to have matured, but have yet to find

widespread clinical application. Good examples of the implemen-

tation of cheap fully-developed devices would be the mass use of

mHealth devices to monitor the general population or the use of VR

devices. However, these devices have not yet found their niche.

Part of the problem is the lack of large-scale trials demonstrating

quantitative benefits. Robotization and 3 D printing appear to be

stuck halfway. There are niches where they have demonstrated

extraordinary usefulness, but they are still not in widespread use.

Increased uptake will largely depend on the discovery of new

applications and advantages that will make their use essential.

The real revolution will probably arrive with systems medicine.

The integrated mathematical models of this approach will replace

evidence-based statistics with personalized health care in which

the cause of each symptom in each patient can be identified and

the effect of each specific treatment can be accurately predicted.

However, this technology is still in its infancy and it will be a long

time before this goal can be achieved.

ACKNOWLEDGMENTS

We would like to acknowledge Dr Alfredo Redondo, cardiologist

at the Clinical Hospital of Valladolid and manager of the VAL 3 D

Lab, for providing some of the images that illustrate this article.

CONFLICTS OF INTEREST

None declared.

REFERENCES

1. Theuns DA, Brouwer TF, Jones PW, et al. Prospective blinded evaluation of a novel
sensing methodology designed to reduce inappropriate shocks by the subcutane-
ous implantable cardioverter-defibrillator. Heart Rhythm. 2018;15:1515–1522.

2. Gong Y, Gao P, Wei L, et al. An enhanced adaptive filtering method for suppressing
cardiopulmonary resuscitation artifact. IEEE Trans Biomed Eng. 2017;64:471–478.

3. Queirós S, Dubois C, Morais P, et al. Automatic 3 D aortic annulus sizing by
computed tomography in the planning of transcatheter aortic valve implantation.
J Cardiovasc Comput Tomogr. 2017;11:25–32.

4. Morais P, Queiros S, Meester P, et al. Fast segmentation of the left atrial appendage
in 3-D transesophageal echocardiographic images. IEEE Trans Ultrason Ferroelectr
Freq Control. 2018;65:2332–2342.

5. Cortes C, Carrasco-Moraleja M, Aparisi A, et al. Quantitative flow ratio – Meta-
analysis and systematic review. Catheter Cardiovasc Interv. 2020. http://dx.doi.org/
10.1002/ccd.28857.

6. Kaplan A, Haenlein M. Siri. Siri in my hand: Who’s the fairest in the land? On the
interpretations, illustrations, and implications of artificial intelligence. Business
Horizons. 2019;62:15–25.
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28. Somashekhar SP, Sepúlveda MJ, Puglielli S, et al. Watson for Oncology and breast
cancer treatment recommendations: agreement with an expert multidisciplinary
tumor board. Ann Oncol. 2018;29:418–423.

29. Schmidt CMD. Anderson breaks with IBM Watson, raising questions about artificial
intelligence in oncology. J Natl Cancer Inst. 2017. http://dx.doi.org/10.1093/jnci/
djx113.

30. Ross C, Swetlitz I. IBM’s Watson supercomputer recommended ‘unsafe and incor-
rect’ cancer treatments, internal documents show. Stat News. 2018. Available at:
https://www.statnews.com/2018/07/25/
ibm-watson-recommended-unsafe-incorrect-treatments. Accessed 15 Feb 2020.

31. Liu X, Faes L, Kale AU, et al. A comparison of deep learning performance against
health-care professionals in detecting diseases from medical imaging: a systematic
review and meta-analysis. Lancet Digit Health. 2019;1:e271–e297.
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