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Atherothrombosis, atherosclerosi,s and their thrombotic 

complications have become epidemic. Both an elevated 

low-density lipoprotein (LDL) cholesterol level and a 

decreased high-density lipoprotein (HDL) cholesterol 

level are associated with the increased incidence of 

atherothrombosis. Reducing LDL using statins has been 

shown to provide very effective therapy for both primary 

and secondary prevention. Nevertheless, despite statin 

treatment, a large percentage of patients continues to 

experience cardiovascular events. Therapies aimed 

at increasing HDL have been investigated for several 

decades, with promising results. However, because 

statin treatment was not standardized in earlier trials, 

it has been difficult to draw clear conclusions. Recent 

advances in both animal studies and clinical trials indicate 

that increasing the HDL level could result in additional 

benefits to those achieved by reducing LDL levels using 

statins. Intravenous infusion of various HDL preparations 

appears to lead to the accelerated regression and 

stabilization of atheromatous plaque, and could provide 

a novel approach to treatment in high-risk patients. This 

review describes the biological rationale underlying the 

use of treatments that increase HDL and discusses the 

potential benefits of such treatment.
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Incremento de las HDL como arma terapéutica 
en la aterotrombosis

La aterotrombosis —aterosclerosis y sus complicacio-

nes trombóticas— es una afección de dimensiones epidé-

micas. Elevadas concentraciones de colesterol de las lipo-

proteínas de baja densidad (LDL) y bajas concentraciones 

de colesterol de las lipoproteínas de alta densidad (HDL) 

se asocian a una incidencia incrementada de aterotrom-

bosis. La reducción de LDL con estatinas se ha mostrado 

como una terapia muy eficaz tanto en prevención primaria 

como en secundaria. Sin embargo, pese al tratamiento 

con estatinas, un gran porcentaje de pacientes siguen su-

friendo eventos cardiovasculares. Las terapias dirigidas a 

aumentar las HDL se prueban desde hace varias décadas, 

con resultados prometedores. La falta de estandarización 

en el tratamiento con estatinas en estos ensayos hace di-

fícil extraer conclusiones definitivas. Recientes avances, 

tanto en estudios animales como en ensayos clínicos, in-

dican que el incremento de las HDL puede resultar en un 

beneficio adicional al de la reducción de las LDL con esta-

tinas. Parece que la infusión intravenosa de diferentes for-

mas de HDL reduce y estabiliza las placas de ateroma de 

una manera acelerada, y supone un nuevo enfoque para 

el tratamiento de los pacientes en muy alto riesgo. En esta 

revisión se describen las bases biológicas que sustentan 

el tratamiento con intervenciones que aumentan las HDL, 

así como los potenciales beneficios que conlleva.

Palabras clave: Aterosclerois. Lipoproteínas. HDL. Placa 

vulnerable. Inflamación.

INTRODUCTION

Atherosclerosis can be defined in very simplified 
and reductionist terms as the result of the imbalance 
between cholesterol entering and leaving the arterial 
wall in such a way that entry predominates. As Figure 1 
shows, the main factor involved in cholesterol entering 
the arterial wall is low-density lipoprotein (LDL), 
whereas the main factor governing cholesterol leaving 
the arterial vessel is high-density lipoprotein (HDL). 
Both high systemic (bloodstream) concentrations of 
LDL cholesterol (LDL-C) and low concentrations 
of HDL cholesterol (HDL-C) have been constantly 
associated with the development of atherosclerosis. 
Following this discovery, multiple therapies have been 
employed in the attempt to prevent the development 
of the disease by reducing LDL or increasing HDL. 
Although reducing LDL, mainly by using statins, is 
still the established standard therapy for the primary 
and secondary prevention of atherothrombotic events, 
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aggregates of LDL-C. The binding of LDL-C particles 
to proteoglycans “sequesters” LDL-C, which prolongs 
contact between LDL-C and the arterial intima.4 This 
binding process makes LDL-C particles more susceptible 
to oxidation. The oxidation of LDL-C is considered a key 
event in the pathogenesis of atherosclerosis.5 Prolonged 
contact of oxidized LDL-C to the arterial intima, as 
well as exposure to different risk factors (hypertension, 
smoking, diabetes mellitus, etc), can lead to endothelial 
dysfunction,6 which is the earliest pathological process 
of atherosclerosis.7 Once the endothelium is damaged, 
LDL-C infiltrates the deepest arterial layers. In an 
attempt to check this LDL-C “invasion,” circulating 
monocytes and macrophages penetrate the arterial 
wall, phagocytize the oxidized LDL-C, and become 
cholesterol-loaded cells. When the macrophages are 
completely loaded with cholesterol, they become 
foam cells. Since cholesterol is not easily metabolized 
outside the liver, its continuous accumulation within 
the cells, which deteriorate, leads to apoptosis, with the 
subsequent release of prothrombotic substances, such 
as tissue factor.8 After the foam-macrophage cells die, 
the cholesterol is again released into the arterial wall 
forming the lipid core of the plaque, thus perpetuating 
the process.9 Furthermore, cholesterol can crystallize, 
and this has recently been identified as a factor in the 
destabilization of plaque.10 

Apart from lipid accumulation, the recruitment 
of additional inflammatory cells to monocytes and 
macrophages is an important factor in atherogenesis. 
Thus, the cellularity of the atherosclerotic lesions is 
modified as the disease progresses. The initial lesions 
are fatty streaks that mainly carry cholesterol-loaded 
macrophages and some leukocyte cells. As the disease 
progresses, the lesion becomes more complex, with 
different cell types and a great deal of extracellular 
material. As the lipid core of the atheromatous plaque 
grows by the accumulation of LDL-C particles and 
macrophages, smooth muscle cells migrate from the 
media to the intima. These cells produce and secrete 
collagen and fibrous elements of the extracellular 
matrix, leading to the formation of the fibrous covering 
of the fibroatheromatous plaques. 

At first, these plaques do not reduce the vascular 
lumen since there is compensatory dilatation of the 
vascular wall (positive remodelling).11 The plaque 
grows eccentrically, leading to thinning of the media 
and the adventitia, until compensatory dilatation cannot 
continue, from which time it begins to grow toward the 
center of the vascular lumen, thus compromising blood 
flow. 

The majority of acute cardiovascular events are not 
caused by progressive narrowing of the vascular lumen, 
but by complications arising from atherosclerotic 
plaque (rupture, ulceration, hemorrhage, erosion) 
that lead to acute vascular occlusion due to vessel 
thrombosis. Plaques with a high lipid content have 

it still has not been conclusively shown that increasing 
HDL provides benefit.  In this article, we review and 
place in historical perspective the biology of HDL, 
the interventions available that increase it, and their 
potential benefits. 

PATHOPHYSIOLOGY OF ATHEROSCLEROSIS

The association between a fat-rich diet (cholesterol) 
and atherosclerotic disease was accepted many years 
ago. However, it was not until the beginning of the 20th 
century that Ignatowski demonstrated it scientifically 
for the first time.1 This author was able to generate 
atherosclerotic vascular lesions in rabbits by providing 
them with a diet rich in milk and egg yolk. Another 
Russian scientist, Nikolai Anitschkow, identified 
cholesterol as the dietary component that causes the 
development of atherosclerotic lesions.2 

Atherothrombotic disease is the leading cause of 
mortality in western countries and is becoming the 
first in developing countries. Thus, research into 
atherosclerosis is fundamental to check the spread of 
this global epidemic. 

Atherosclerosis is a systemic disease with local 
clinical manifestations3 and it is mainly characterized 
by lipid deposition on the walls of medium- and large-
sized arteries. High concentrations of circulating LDL-C 
lead to it accumulate in the arterial intima. These small 
particles of LDL are deposited in the areas of the 
intima that are rich in proteoglycans and converge into 
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Figure 1. Pictorial representation of the main agents involved in the influx 
and efflux of cholesterol. The bathtub represents the vessel wall. The main 
agents controlling cholesterol entering the vessel are low-density lipopro-
teins (LDL), guided by their main protein, apolipoprotein (apo) B. High-den-
sity lipoproteins (HDL), on the other hand, control cholesterol efflux from 
the arterial wall by the interaction between their main protein, ApoA-I, and 
the receptors in the macrophage. 
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correlated with increased patient vulnerability (ie, the 
risk of suffering an atherothrombotic event).16

All the foregoing leads to the conclusion that the 
vulnerability of atheromatous plaques is modulated 
by local and systemic factors. The vulnerability of the 
plaques can be locally and systemically reduced (ie, 
stabilized). Atheromatous plaque stabilization can be 
achieved by the use of drugs. Statins have demonstrated 
capacity to reduce cardiovascular events17 and to 
even stabilize atheromatous plaques.18 However, the 
stabilization of such plaques only occurs after several 
months of treatment . Most cardiovascular events occur 
in the first weeks after the initial episode.19 Therefore, 
there is a pressing need for interventions that can lead 
to acute reductions in the vulnerability of atheromatous 
plaques. As shown in the following sections, HDL 
may play an important role not only in the reduction of 
plaque volume, but in its stabilization. 

REVERSE CHOLESTEROL TRANSPORT.  
THE BIOLOGY OF HIGH-DENSITY 
LIPOPROTEIN

As mentioned, lipid accumulation on the arterial 
wall is a dynamic and bidirectional process involving 
natural mechanisms that extract the cholesterol that has 
accumulated on the vessel wall. 

Reverse cholesterol transport (RCT) is defined as the 
efflux of cholesterol from extrahepatic tissue and its 
transport to the liver for metabolization and ultimately 
excretion via the intestines together with bile acids. 
As described, HDL plays a key role in the efflux of 
cholesterol from atherosclerotic lesions and its transport 
to the liver for metabolization and final excretion via the 
intestines together with the feces. Figure 2 illustrates 
the key role of HDL in RCT.20 

The main HDL protein is apolipoprotein A-I (ApoA-I), 
whose role is the transportation of HDL. ApoA-I 
constitutes more than 70% of the total protein content 
in HDL particles; for this reason, in normal conditions 
(ie, without pharmacological intervention), the ApoA-I 
plasma concentrations are closely correlated with HDL 
plasma concentrations. Apolipoprotein A-II is the second 
most abundant apolipoprotein in HDL, but its role has 
yet to be elucidated. High-density lipoprotein contains 
some other proteins in lower concentrations.21,22 The 
importance of ApoA-I in the biology of HDL has been 
clarified in several basic research studies. The deletion 
of the ApoA-I gene causes extremely low concentrations 
of HDL in mice.23 In fact, mice with a predisposition to 
atherosclerosis that lack ApoA-I develop much more 
aggressive atherosclerotic disease.24 On the other hand, 
the hepatic overexpression of ApoA-I increases HDL 
concentrations, inhibits atherosclerosis progression, 
and even causes the regression of atherosclerosis in 
laboratory animals.25,26 Thus, endogenous ApoA-I 
overexpression is one of the most promising strategies 

also been called “unstable,” “vulnerable,” or “high-
risk,” due to their propensity to rupture and increase the 
possibility of an acute event. From the clinical point of 
view, atherosclerosis is basically characterized by the 
formation of an acute (occlusive) thrombus anchored 
to the broken or eroded plaque, and thus the term 
atherothrombosis more accurately describes the nature 
of the disease. 

ATHEROTHROMBOSIS: IMPORTANCE  
OF PLAQUE COMPOSITION 

“Man lives with atherosclerosis, but dies of 
thrombosis.” 

Although lipid accumulation on the arterial walls 
is the basis of atherosclerosis, the mere presence 
of atheromatous plaques does not generate any 
symptoms as such. The clinical manifestations of 
the disease are secondary to rupture of atheromatous 
plaques with superimposed thrombosis. Depending 
on to what extent the thrombus impedes arterial 
flow, the manifestations will be more severe or less 
severe. Thrombosis is the fundamental mechanism 
of transition from a chronic-latent state of disease to 
a symptomatic acute state. 

The plaques traditionally considered as high-risk are 
usually those with abundant lipid components, separated 
from the vessel lumen by a thin layer of extracellular 
matrix covered by the endothelium.12 The rupture of 
atheromatous plaque seems to be driven by some passive 
mechanisms (shearing stress) and active mechanisms 
(macrophage infiltration and activation, proteolytic 
enzyme release, inflammatory cell infiltration, etc). 
The presence of matrix metalloproteinases (MMPs) 
is of special interest. The MMPs are enzymes that 
degrade the extracellular matrix of the plaque, making 
it more unstable and therefore more prone to rupture. 
It has been observed that, in atherosclerotic lesions, 
MMPs are expressed in the regions with a greater 
propensity to rupture, where they are found together 
with macrophages, and this confirms their involvement 
in plaque instability.13 

The local and systemic mechanisms that modulate 
thrombosis are highly relevant in this disease. The 
factors external to the plaque (systemic factors) also 
modulate its vulnerability, as well as thrombogenicity 
once it has ruptured. In fact, some systemic factors, 
such as high LDL-C concentrations, smoking, 
hyperglycemia, diabetes and others, are associated with 
an increase in the coagulability of the blood.14 Some 
recent studies have demonstrated that the endothelial 
cells that cover the atherosclerotic plaques can become 
procoagulant due to apoptosis induction.15 

In recent decades, the relevance of inflammation 
in atherothrombosis has been highlighted. In fact, the 
presence of local and systemic inflammation markers is 
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– Aqueous diffusion: the efflux of free cholesterol by 
this mechanism takes place in all cell types, but is quite 
inefficient. This passive mechanism involves a simple 
diffusion process whereby cholesterol movement can 
be bidirectional, and in which the direction of the flow 
only depends on the cholesterol concentration gradient. 
In addition, it is a slow process (the passage of lipids 
through the lipid bilayer takes several hours). 

– ABCA-1-mediated free cholesterol efflux: in 
contrast to the aqueous diffusion mechanism, the 
ABCA-1-mediated movement of free cholesterol is 
unidirectional, that is, from the cells to lipid-poor 
apoliprotein. 

– Scavenger receptor class-B type I (SR-BI): as in 
the diffusion process, but in clear contrast to ABCA-
1, the flux of free cholesterol mediated by SR-BI only 
takes place toward phospholipid-containing acceptors 
(ie, HDL and lipidated apolipoprotein) and the flux of 
free cholesterol is bidirectional (dependent only on the 
free cholesterol concentration gradient on both sides of 
the membrane). 

– ABCG-1/ABCG-4: it was recently discovered 
that ABCG-1 also provides alternative pathway for 
the transport of free cholesterol from macrophages to 
mature HDL,34 but never toward nascent HDL (lipid-
poor ApoA-I). 

in therapies aimed at increasing HDL concentrations. 
However, in vivo studies in humans have shown that 
the main factor affecting plasma HDL concentrations is 
the ApoA-I clearance rate, and not the ApoA-I synthesis 
rate.27 

The steps involved in RCT are briefly described 
below (Figure 2). 

Synthesis of HDL

The synthesis and secretion of ApoA-I (the main 
component of HDL) in the bloodstream take place in 
the liver28 and in the intestine29; the liver produces 75% 
of human ApoA-I.30,31 Both these types of tissues control 
the lipidation of freshly secreted lipid-poor ApoA-I, via 
the ATP binding cassette transporter A-1 (ABCA-1) 
receptor. The nascent HDL (which is also called lipid-
poor ApoA-I) usually contains 2 molecules of ApoA-I 
per particle, whereas the lipids (phospholipids and free 
cholesterol) barely form 10% of their total mass.32 

Cholesterol Uptake by Nascent HDL

This process takes place via a number of 
mechanisms,33 which finally results in the formation of 
discoidal particles of HDL: 

Figure 2. Reverse cholesterol transport and the role of high-density lipoproteins (HDL). The main protein of HDL, apolipoprotein A-I (ApoA-I), is synthesized 
by the liver and intestine. As it enters the bloodstream, it is lipidized (and bonds with phospholipids that will act as a reservoir for cholesterol transport ). 
ApoA-I “guides” nascent HDL (poor in lipids and rich in protein) toward the extrahepatic tissues, mainly toward macrophages, where it interacts with the ATP 
binding cassette transporter A-1 (ABCA-1) receptor, and extracts cholesterol from them. Back in the bloodstream, lecithin-cholesterol acyltransferase (LCAT) 
esterifies the cholesterol, and mature HDL is formed. This can return to the liver, where they mainly interact with the SR-BI receptors in the hepatocytes and 
“pour” the cholesterol into the liver for subsequent biliary excretion, or can exchange their esterified cholesterol for triglycerides with low-density lipoproteins 
(LDL) and very-low-density (VLDL), that can travel to the liver to eliminate the cholesterol (via the LDL receptor) or once again to the extrahepatic tissues. 
(Adapted with permission from Brewer et al20) HDL-C indicates high-density lipoprotein cholesterol.
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and in the kidney; and b) selective cholesterol uptake: 
removal of cholesterol and other lipids from the particle 
without affecting the protein content. The mechanism 
that has been best characterized is liver uptake by the 
hepatic SR-BI receptor.42 This receptor mediates the 
selective uptake of other lipids, with higher uptake for 
cholesterol esters and free cholesterol and lower uptake 
for phospholipids and triglycerides. 

It has been suggested that the cholesterol transported 
in HDL is directed toward biliary excretion more 
than other types of cholesterol.43 The free cholesterol 
transported in HDL can be excreted directly to bile 
or can be converted into bile acids (the rate-limiting 
enzyme for this reaction is 7a hydroxylase) before bile 
excretion.32 

In short, RCT is a complex mechanism enabling 
cholesterol from extrahepatic tissue to be transported 
toward the liver for its final metabolism and its 
excretion by bile. High-density lipoproteins play a key 
role in RTC, and there are key receptors in different 
tissues, with ABCA-1 in macrophages and SR-BI in 
hepatocytes being the most important. 

VASCULAR EFFECTS OF REVERSE 
CHOLESTEROL TRANSPORT- 
INDEPENDENT HDL

The beneficial effects of high HDL concentrations 
used to be exclusively attributed to the effect of HDL 
on RCT. However, nowadays, it is known that there 
are mechanisms unrelated to RCT that also contribute 
to the vascular protective effect of HDL. High-density 
lipoprotein, and more specifically, its main protein 
(ApoA-I), have direct antioxidant effects. Thus, HDL/
ApoA-I have the capacity to inhibit LDL oxidation 
(the main mechanism in atherogenesis, as described). 
In addition, HDL has other antiinflammatory 
properties, such as inhibiting the expression of 
cell adhesion molecules in endothelial cells. This 
inhibition results in a reduction of the recruitment of 
circulating monocytes by the vascular wall. For more 
detail on the antiinflammatory properties of HDL/
ApoA-I, we refer the reader to some comprehensive 
studies.44,45

Since the beneficial activity of HDL involves all the 
processes associated with the development, progression, 
and onset of atherosclerosis symptoms, increasing 
the HDL concentrations could be a core target in the 
treatment of this disease. 

NEW STRATEGIES TO INCREASE HDL

It has been demonstrated beyond doubt that reducing 
LDL is an effective and safe strategy to reduce the 
risk of cardiovascular disease.3 Despite the impressive 
benefits demonstrated by statins in reducing morbidity 
and mortality, there is still a considerable proportion 

Maturation and Remodeling of HDL

The nascent HDL particles undergo an intravascular 
process of remodeling and maturation35 by the action of 
several enzymes: 

– LCAT (lecithin-cholesterol acyltransferase): 
within the discoidal nascent HDL molecule, LCAT 
catalyzes the transfer of 2-acyl groups from lecithin 
to free cholesterol from macrophages, and in this way 
cholesterol esters and lysolecithin are generated.36 
The cholesterol esters are more hydrophobic than free 
cholesterol, and therefore they move to the core of 
the lipoprotein particle, thus forming a mature HDL 
molecule, which is large and spherical.37 Lecithin-
cholesterol acyltransferase is essential for the correct 
metabolism of HDL, since its absence prevents the 
correct formation of mature HDL particles with normal 
lipid cores of cholesterol esters. 

– CETP (cholesterol ester transfer protein): the 
CETP is a hydrophobic glycoprotein synthesized in the 
liver and adipose tissue, and that circulates bound to 
lipoproteins in plasma. Cholesterol ester transfer protein 
promotes the transfer of cholesterol esters from HDL 
particles to lipoproteins that contain apoprotein B (not 
only LDL, but also chylomicrons and very-low-density 
lipoproteins [VLDL]) in exchange for triglycerides. 
That is, we can say that CETP transfers triglycerides 
from VLDL, chylomicrons and LDL to HDL,38,39 and 
therefore the end result is the migration of cholesterol 
esters back to LDL; the RCT cycle is completed with 
the re-uptake of cholesterol esters by the liver LDL 
receptors. The overall effect of CETP on HDL consists 
in depleting it of cholesterol esters and providing 
triglycerides, such that the size of the HDL particle is 
reduced. The inhibition of CETP has been suggested as 
a promising therapy for the treatment of atherosclerosis. 
However, a recent study to test the effect of a CETP 
inhibitor (torcetrapib) in humans resulted in increased 
risk of death in the active group.40 

– Other proteins implicated in these processes include 
phospholipid transfer protein and several lipases 
(lipoprotein lipase, hepatic lipase and endothelial 
lipase). 

HDL Catabolism 

As mentioned, the key factor determining HDL and 
ApoA-I plasma concentrations is the ApoA-I clearance 
rate. The kidneys, liver, and steroid-producing tissues 
are the main sites for HDL catabolism. Animal studies 
have established that one-third of ApoA-I is catabolized 
by the kidneys, whereas the rest is catabolized in the 
liver.41 The clearance of HDL can take place in 2 different 
ways: a) uptake of the whole particle (holoparticle): 
endocytosis and lysosomal degradation of the whole 
particle (including ApoA-I), which occurs in the liver 
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atherosclerosis,51-53 HDL has become a focus of great 
scientific and clinical interest. 

There are different intervention approaches to increasing 
the HDL concentrations. In addition to life-style changes 
(more exercise, moderate alcohol consumption, etc), an 
increase of circulating HDL can be achieved via several 
therapeutic targets, among which the following are the 
most representative: increasing the synthesis of ApoA-I 
or reducing its catabolism, inhibiting CETP, and infusing 
exogenous HDL/ApoA-I. The hepatic synthesis of 
ApoA-I can be increased with peroxisome proliferator-
activated receptors (PPARa), such as the fibrates. Apart 
from obtaining an important reduction of triglycerides 
and a moderate reduction of LDL, fibrates significantly 
increase HDL concentrations. Several clinical trials 
have studied the effect of fibrates on the prevention of 
cardiovascular events, and have obtained encouraging, 
but not definitive, results.54,55 Some ongoing studies may 
lead to more concrete results on the effect of this therapy 
on patients already receiving statin treatment. 

Nicotinic acid (niacin) and its derivatives strongly 
increase HDL concentrations and reduce the catabolism 
of ApoA-I. Pilot studies have shown their potential 
efficacy in the regression of atheromatous plaques.56 

of patients with optimal LDL concentrations who 
continue to suffer cardiovascular events. For this 
reason, there is a pressing need to reduce the residual 
risk of cardiovascular events. Not only is it known that 
low HDL concentrations are a relevant independent 
risk factor for cardiovascular disease, 46 but it has 
been demonstrated that the vascular protective effect 
of high HDL concentrations applies to the whole 
spectrum of LDL concentrations, even in patients 
with low LDL concentrations (Figure 3).47-49 Bearing 
this in mind, increasing the HDL concentrations 
is a modern, innovative and promising strategy in 
atherothrombosis. 

Based on the inversely proportional association 
between HDL concentrations and cardiovascular 
disease, Miller et al50 were the first to suggest that 
increasing the HDL concentrations would represent a 
new frontier in the treatment of atherosclerosis. In this 
line, the first intervention study was conducted by our 
group at the end of the 1980s. We demonstrated for the 
first time that the exogenous administration of HDL 
achieves remission of atheromatous lesions generated 
in an animal model.51,52 Since first experimental 
demonstration of the beneficial effect of HDL on 
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Figure 3. High-density lipoprotein 
cholesterol (HDL-C) concentrations and 
their correlation with cardiovascular 
events in the Framingham study. 
The inverse correlation between 
HDL-C and cardiovascular events is 
maintained for any concentration of 
low-density lipoprotein cholesterol 
(LDL-C), including the lowest 
concentrations. This represents an 
extra benefit (perhaps independent) 
additional to reducing them. (Adapted 
with permission from Genest et al49). 
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most popular hypothesis is that it might be due to the 
off-target adverse effects of the torcetrapib molecule 
(direct vascular toxicity, hypertension and interaction 
between the renin-angiotensin-aldosterone system and 
torcetrapib),63 and not to CETP inhibition itself. Other 
ongoing studies are analyzing the effect of other CETP 
inhibitors.64,65

Following the first results obtained in a rabbit model 
some 20 years ago,52 the exogenous infusion of HDL 
and derivatives has been studied by different groups. 
The type of HDL for which there is more preclinical 
experience is the infusion of recombinant HDL formed 
by ApoA-IMilano and phospholipids (HDLMilano). The 
infusion of HDLMilano was studied in a pilot trial in 
humans, with promising results.66 Another form of 
HDL studied in humans—also with promising initial 
results—is reconstituted HDL containing native human 
ApoA-I and phospholipids.67 Both forms of synthetic 
HDL have been analyzed using short-term intravenous 
infusions (a weekly infusion for approximately 1 
month), and significant results were obtained regarding 
the regression of plaque at the coronary level in patients 
with clinical atherothrombosis. The main potential 
advantage of these forms of HDL is their speed of effect 
in reducing plaque. 

Recombinant HDL (ApoA-IMilano): HDLMilano 

HDLMilano is the result of a spontaneous mutation 
of ApoA-I (known as ApoA-IMilano) identified by the 
Sirtori group in the late 1970s in Limone Garda Sul, a 

Very recently, the Choudhury group published the first 
study to analyze the anti-atherosclerotic effect of niacin 
on patients with very low LDL concentrations (around 
80 mg/dL) who were being treated with statins.57 For 
the first time, it has been demonstrated that increasing 
the HDL concentrations via treatment with niacin is 
capable of reducing the volume of atheroma plaque in 
the carotid artery, as assessed by magnetic resonance 
imaging (Figure 4). 

However, up to the present, the high rate of minor 
adverse effects (mainly rubor) involved in treatment 
with niacin has made it difficult to validate it in large 
clinical studies. Recently, a new drug combining niacin 
with a facial rubor inhibitor has been marketed and is 
one of most innovative therapies to increase HDL in 
patients with atherothrombotic disease.58 

The CETP inhibitors are another group of drugs 
that significantly increase HDL concentrations. 
Experimental animal studies have demonstrated that 
the CETP inhibition has a beneficial antisclerotic 
effect.59 After these preclinical studies, pilot studies 
in humans have corroborated an increase in HDL 
concentrations ranging between 35% and 50% after 
the administration of CETP inhibitors. 60-62 Following 
these encouraging results, the effect of the CETP 
inhibitor torcetrapib was studied in a large multicenter 
trial (ILLUMINATE). Surprisingly, the study had to 
be prematurely interrupted due to an increase in death 
among patients in the torcetrapib arm, despite a very 
significant increase in HDL concentrations.40 The cause 
of this failure is not known with any certainty, but the 

Figure 4. Atheromatous plaque regression in a carotid artery 
in patients treated with niacin (nicotinic acid). Magnetic 
resonance imaging of cross-sectional view of the carotid 
arteries before (A and C) and after 12 months of treatment 
with niacin (B and D). Regression of plaque volume in the 
niacin group (A and B) and the absence of progression in 
the placebo group (C and D) can be observed Both groups 
presented low-density lipoprotein concentrations and were 
treated with statins according to the clinical guidelines. 
(Reproduced with permission from Reads et al57). 
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highlighting the fact that all these beneficial effects on 
plaque volume and stability were observed after only 2 
infusions of HDLMilano (during 4 days). Currently, there 
are several interventions that have proven effective 
in stabilizing atheromatous plaque83; however, the 
time required to induce this effect was relatively long 
(several months). It is important to emphasize that most 
recurrent events occur in the acute phase after the first 
ischemic event.19 Our results indicate that a loading 
dose of intravenous HDLMilano can induce rapid plaque 
regression, with a stabilizing effect on active and high-
risk plaques. 

CONCLUSIONS

High serum concentrations of HDL have 
been correlated with a decreased incidence of 
atherothrombotic events; thus, the possibility of 
increasing HDL concentrations using drugs is being 
investigated in order to fight this epidemic disease. 
There are different therapeutic targets to obtain a 
significant increase in circulating HDL. Several groups 
of drugs have been studied with promising results for 
long-term treatment. The benefit of increasing HDL 
concentrations seems to be additional to the benefits 
derived from chronic treatment with statins. Intravenous 
infusion of different forms of reconstituted HDL results 
in very acute plaque regression, and which is associated 
with plaque stabilization in the case of HDLMilano. 
Although confirmation by cardiovascular events 
studies is still pending, therapy aimed at increasing the 
HDL concentrations seems to be within reach and may 
prove to be another step forward in the treatment of 
atherothrombosis. 
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