ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 11. Núm. D.
Páginas 37-41 (Junio 2011)

Aspectos emergentes del sistema renina-angiotensina en la diabetes: ¿cómo abordar su traslación a la clínica?

Emerging Understanding of the Renin-Angiotensin System in Diabetes: How Can It Be Applied Clinically?

Susana RavassaaArantxa GonzálezaJavier Díezab¿

Opciones

Resumen

El sistema renina-angiotensina desempeña un papel determinante en la aparición de complicaciones cardiovasculares y renales en el contexto de la diabetes mellitus. Las acciones del sistema reninaangiotensina incluyen no sólo las dependientes de la producción de angiotensina II, sino también las resultantes de la activación del sistema renina-pro-renina/receptor de la pro-renina. En los últimos años, diversos estudios clínicos y experimentales señalan la implicación del sistema renina-pro-renina/receptor de la pro-renina en el daño de órganos diana en la diabetes mellitus. Este artículo revisa los principales estudios que han contribuido a una mayor comprensión de dicho sistema y de su papel como posible diana terapéutica en la diabetes mellitus.

Este artículo solo puede leerse en pdf
Bibliografía
[1.]
A.H. Danser.
Local renin-angiotensin systems: the unanswered questions.
Int J Biochem Cell Biol, (2003), 35 pp. 759-768
[2.]
S. Anderson.
Role of local and systemic angiotensin in diabetic renal disease.
Kidney Int Suppl, (1997), 63 pp. S107-S110
[3.]
D.A. Price, L.E. Porter, M. Gordon, N.D. Fisher, J.M. De’Oliveira, L.M. Laffel, et al.
The paradox of the low-renin state in diabetic nephropathy.
J Am Soc Nephrol, (1999), 10 pp. 2382-2391
[4.]
R.E. Gilbert, H. Krum, J. Wilkinson-Berka, D.J. Kelly.
The renin-angiotensin system and the long-term complications of diabetes: pathophysiological and therapeutic considerations.
Diabet Med, (2003), 20 pp. 607-621
[5.]
R. Kumar, V.P. Singh, K.M. Baker.
The intracellular renin-angiotensin system: implications in cardiovascular remodeling.
Curr Opin Nephrol Hypertens, (2008), 17 pp. 168-173
[6.]
M. Van den Heuvel, W.W. Batenburg, A.H. Danser.
Diabetic complications: a role for the prorenin-(pro)renin receptor-TGF-beta1 axis?.
Mol Cell Endocrinol, (2009), 302 pp. 213-218
[7.]
G. Nguyen, A. Contrepas.
The (pro)renin receptors.
J Mol Med, (2008), 86 pp. 643-646
[8.]
G. Nguyen, F. Delarue, C. Burcklé, L. Bouzhir, T. Giller, J.D. Sraer.
Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin.
J Clin Invest, (2002), 109 pp. 1417-1427
[9.]
G. Nguyen, D.N. Muller.
The biology of the (pro)renin receptor.
J Am Soc Nephrol, (2010), 21 pp. 18-23
[10.]
A.H. Nabi, A. Kageshima, M.N. Uddin, T. Nakagawa, E.Y. Park, F. Suzuki.
Binding properties of rat prorenin and renin to the recombinant rat renin/prorenin receptor prepared by a baculovirus expression system.
Int J Mol Med, (2006), 18 pp. 483-488
[11.]
W.W. Batenburg, M. Krop, I.M. Garrelds, R. De Vries, R.J. De Bruin, C.A. Burcklé, et al.
Prorenin is the endogenous agonist of the (pro)renin receptor. Binding kinetics of renin and prorenin in rat vascular smooth muscle cells overexpressing the human (pro)renin receptor.
J Hypertens, (2007), 25 pp. 2441-2453
[12.]
N.A. Nurun, N.M. Uddin, T. Nakagawa, H. Iwata, A. Ichihara, T. Inagami, et al.
Role of “handle” region of prorenin prosegment in the non-proteolytic activation of prorenin by binding to membrane anchored (pro)renin receptor.
Front Biosci, (2007), 12 pp. 4810-4817
[13.]
Y. Huang, S. Wongamorntham, J. Kasting, D. McQuillan, R.T. Owens, L. Yu, et al.
Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms.
Kidney Int, (2006), 69 pp. 105-113
[14.]
Y. Huang, N.A. Noble, J. Zhang, C. Xu, W.A. Border.
Renin-stimulated TGF-beta1 expression is regulated by a mitogen-activated protein kinase in mesangial cells.
Kidney Int, (2007), 72 pp. 45-52
[15.]
J.J. Saris, P.A. ‘t Hoen, I.M. Garrelds, D.H. Dekkers, J.T. Den Dunnen, J.M. Lamers, et al.
Prorenin induces intracellular signaling in cardiomyocytes independently of angiotensin II.
Hypertension, (2006), 48 pp. 564-571
[16.]
J.H. Schefe, M. Menk, J. Reinemund, K. Effertz, R.M. Hobbs, P.P. Pandolfi, et al.
A novel signal transduction cascade involving direct physical interaction of the renin/prorenin receptor with the transcription factor promyelocytic zinc finger protein.
[17.]
S. Feldt, W.W. Batenburg, I. Mazak, U. Maschke, M. Wellner, H. Kvakan, et al.
Prorenin and renin-induced extracellular signal-regulated kinase 1/2 activation in monocytes is not blocked by aliskiren or the handle-region peptide.
Hypertension, (2008), 51 pp. 682-688
[18.]
H.M. El-Shewy, L.M. Luttrell.
Insulin-like growth factor-2/mannose-6 phosphate receptors.
Vitam Horm, (2009), 80 pp. 667-697
[19.]
J. Peters, R. Farrenkopf, S. Clausmeyer, J. Zimmer, S. Kantachuvesiri, M.G. Sharp, et al.
Functional significance of prorenin internalization in the rat heart.
Circ Res, (2002), 90 pp. 1135-1141
[20.]
P.J. Admiraal, C.A. Van Kesteren, A.H. Danser, F.H. Derkx, W. Sluiter, M.A. Schalekamp.
Uptake and proteolytic activation of prorenin by cultured human endothelial cells.
J Hypertens, (1999), 17 pp. 621-629
[21.]
J.J. Saris, F.H. Derkx, R.J. De Bruin, D.H. Dekkers, J.M. Lamers, P.R. Saxena, et al.
Highaffinity prorenin binding to cardiac man-6-P/IGF-II receptors precedes proteolytic activation to renin.
Am J Physiol Heart Circ Physiol, (2001), 280 pp. H1706-H1715
[22.]
J.J. Saris, F.H. Derkx, J.M. Lamers, P.R. Saxena, M.A. Schalekamp, A.H. Danser.
Cardiomyocytes bind and activate native human prorenin: role of soluble mannose 6-phosphate receptors.
Hypertension, (2001), 37 pp. 710-715
[23.]
C.A. Van Kesteren, A.H. Danser, F.H. Derkx, D.H. Dekkers, J.M. Lamers, P.R. Saxena, et al.
Mannose 6-phosphate receptor-mediated internalization and activation of prorenin by cardiac cells.
Hypertension, (1997), 30 pp. 1389-1396
[24.]
S. Hinrichs, J. Heger, R. Schreckenberg, S. Wenzel, G. Euler, C. Arens, et al.
Controlling cardiomyocyte length: The role of renin and PPAR-{gamma}.
Cardiovasc Res, (2011), 89 pp. 344-352
[25.]
M. Véniant, J. Ménard, P. Bruneval, S. Morley, M.F. Gonzales, J. Mullins.
Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver.
J Clin Invest, (1996), 98 pp. 1966-1970
[26.]
Y. Kaneshiro, A. Ichihara, M. Sakoda, T. Takemitsu, A.H. Nabi, M.N. Uddin, et al.
Slowly progressive, angiotensin II-independent glomerulosclerosis in human (pro)renin receptor-transgenic rats.
J Am Soc Nephrol, (2007), 18 pp. 1789-1795
[27.]
H.M. Siragy, J. Huang.
Renal (pro)renin receptor upregulation in diabetic rats through enhanced angiotensin AT1 receptor and NADPH oxidase activity.
Exp Physiol, (2008), 93 pp. 709-714
[28.]
A. Ichihara, M. Hayashi, Y. Kaneshiro, F. Suzuki, T. Nakagawa, Y. Tada, et al.
Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin.
J Clin Invest, (2004), 114 pp. 1128-1135
[29.]
A. Ichihara, F. Suzuki, T. Nakagawa, Y. Kaneshiro, T. Takemitsu, M. Sakoda, et al.
Prorenin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice.
J Am Soc Nephrol, (2006), 17 pp. 1950-1961
[30.]
J.A. Luetscher, F.B. Kraemer, D.M. Wilson, H.C. Schwartz, M. Bryer-Ash.
Increased plasma inactive renin in diabetes mellitus. A marker of microvascular complications.
N Engl J Med, (1985), 312 pp. 1412-1417
[31.]
A.A. Franken, F.H. Derkx, M.A. Schalekamp, A.J. Man in t’Veld, W.C. Hop, E.H. Van Rens, et al.
Association of high plasma prorenin with diabetic retinopathy.
J Hypertens Suppl, (1988), 6 pp. S461-S463
[32.]
J. Deinum, B. Rønn, E. Mathiesen, F.H. Derkx, W.C. Hop, M.A. Schalekamp.
Increase in serum prorenin precedes onset of microalbuminuria in patients with insulindependent diabetes mellitus.
Diabetologia, (1999), 42 pp. 1006-1010
[33.]
K. Takahashi, H. Yamamoto, T. Hirose, K. Hiraishi, I. Shoji, A. Shibasaki, et al.
Expression of (pro)renin receptor in human kidneys with end-stage kidney disease due to diabetic nephropathy.
Peptides, (2010), 31 pp. 1405-1408
[34.]
A. Flyvbjerg, U. Kessler, W. Kiess.
Increased kidney and liver insulin-like growth factor II/mannose-6-phosphate receptor concentration in experimental diabetes in rats.
Growth Regul, (1994), 4 pp. 188-193
[35.]
A. Flyvbjerg, D. Landau, H. Domene, L. Hernandez, H. Grønbaek, D. LeRoith.
The role of growth hormone, insulin-like growth factors (IGFs), and IGF-binding proteins in experimental diabetic kidney disease.
Metabolism, (1995), 44 pp. 67-71
[36.]
W. Kiess, A. Hoeflich, Y. Yang, H. Groenbaek, A. Flyvbjerg.
Streptozotocin induction of diabetes in rats leads to increased insulin-like growth factor-II/mannose-6-phosphate receptor mRNA expression in kidney but not in lung or heart.
Growth Regul, (1996), 6 pp. 66-72
[37.]
M. Costello, R.C. Baxter, C.D. Scott.
Regulation of soluble insulin-like growth factor II/mannose 6-phosphate receptor in human serum: measurement by enzyme-linked immunosorbent assay.
J Clin Endocrinol Metab, (1999), 84 pp. 611-617
[38.]
N. Jeyaratnaganthan, K. Højlund, J.P. Kroustrup, J.F. Larsen, M. Bjerre, K. Levin, et al.
Circulating levels of insulin-like growth factor-II/mannose-6-phosphate receptor in obesity and type 2 diabetes.
Growth Horm IGF Res, (2010), 20 pp. 185-191
[39.]
W.W. Batenburg, R.J. De Bruin, J.M. Van Gool, D.N. Müller, M. Bader, G. Nguyen, et al.
Aliskiren-binding increases the half life of renin and prorenin in rat aortic vascular smooth muscle cells.
Arterioscler Thromb Vasc Biol, (2008), 28 pp. 1151-1157
[40.]
D.L. Feldman, L. Jin, H. Xuan, A. Contrepas, Y. Zhou, R.L. Webb, et al.
Effects of aliskiren on blood pressure, albuminuria, and (pro)renin receptor expression in diabetic TG(mRen-2)27 rats.
Hypertension, (2008), 52 pp. 130-136
[41.]
V.P. Singh, B. Le, R. Khode, K.M. Baker, R. Kumar.
Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis.
Diabetes, (2008), 57 pp. 3297-3306
[42.]
Y.F. Dong, L. Liu, K. Kataoka, T. Nakamura, M. Fukuda, Y. Tokutomi, et al.
Aliskiren prevents cardiovascular complications and pancreatic injury in a mouse model of obesity and type 2 diabetes.
Diabetologia, (2010), 53 pp. 180-191
[43.]
Y.S. Kang, M.H. Lee, H.K. Song, Y.Y. Hyun, J.J. Cha, G.J. Ko, et al.
Aliskiren improves insulin resistance and ameliorates diabetic vascular complications in db/db mice.
Nephrol Dial Transplant, (2010),
[44.]
D.Z. Cherney, V. Lai, J.W. Scholey, J.A. Miller, B. Zinman, H.N. Reich.
Effect of direct renin inhibition on renal hemodynamic function, arterial stiffness, and endothelial function in humans with uncomplicated type 1 diabetes: a pilot study.
Diabetes Care, (2010), 33 pp. 361-365
[45.]
C.M. Ferrario.
Addressing the theoretical and clinical advantages of combination therapy with inhibitors of the renin-angiotensin-aldosterone system: antihypertensive effects and benefits beyond BP control.
Life Sci, (2010), 86 pp. 289-299
[46.]
T. Takemitsu, A. Ichihara, Y. Kaneshiro, M. Sakoda, A. Kurauchi-Mito, T. Narita, et al.
Association of (pro)renin receptor mRNA expression with angiotensin-converting enzyme mRNA expression in human artery.
Am J Nephrol, (2009), 30 pp. 361-370
[47.]
Y. Uresin, A.A. Taylor, C. Kilo, D. Tschöpe, M. Santonastaso, G. Ibram, et al.
Efficacy and safety of the direct renin inhibitor aliskiren and ramipril alone or in combination in patients with diabetes and hypertension.
J Renin Angiotensin Aldosterone Syst, (2007), 8 pp. 190-198
[48.]
H.H. Parving, F. Persson, J.B. Lewis, E.J. Lewis, N.K. Hollenberg, AVOID Study Investigators.
Aliskiren combined with losartan in type 2 diabetes and nephropathy.
N Engl J Med, (2008), 358 pp. 2433-2446
[49.]
F. Persson, P. Rossing, H. Reinhard, T. Juhl, C.D. Stehouwer, C. Schalkwijk, et al.
Renal effects of aliskiren compared with and in combination with irbesartan in patients with type 2 diabetes, hypertension, and albuminuria.
Diabetes Care, (2009), 32 pp. 1873-1879
[50.]
F. Persson, J.B. Lewis, E.J. Lewis, P. Rossing, N.K. Hollenberg, H.H. Parving, for the AVOID study investigators.
Impact of baseline renal function on the efficacy and safety of aliskiren added to losartan in patients with type 2 diabetes and nephropathy.
Diabetes Care, (2010), 33 pp. 2304-2309
[51.]
S.D. Solomon, E. Appelbaum, W.J. Manning, A. Verma, T. Berglund, V. Lukashevich, Aliskiren in Left Ventricular Hypertrophy (ALLAY) Trial Investigators, et al.
Effect of the direct Renin inhibitor aliskiren, the Angiotensin receptor blocker losartan, or both on left ventricular mass in patients with hypertension and left ventricular hypertrophy.
Circulation, (2009), 119 pp. 530-537
Copyright © 2011. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?