

Revista Española de Cardiología

7001-5. MECANISMOS DE ADAPTACIÓN CARDIOVASCULAR EN EL DEPORTE DE RESISTENCIA O FUERZA. UN ESTUDIO ECOCARDIOGRÁFICO MEDIANTE SPECKLE-TRACKING 2D

Juan Lacalzada Almeida, Patricia Barrios Martínez, Carima Belleyo Belkasem, Alejandro de la Rosa Hernández, Carolina Lacalzada Higueras, Laura González Moujir, Patricia Hernández Méndez e Ignacio Laynez Cerdeña del Complejo Hospitalario Universitario de Canarias, San Cristóbal de La Laguna (Tenerife).

Resumen

Introducción y objetivos: El análisis del *strain* (S) y *strain* rate (SR) utilizando ecocardiografía transtorácica 2D (ETT) *speckle-tracking* imagen (STI) detecta modificaciones en la función sistólica y diastólica del ventrículo izquierdo (VI), según el tipo de deporte sea de resistencia (DR) o de fuerza (DF). El objetivo de nuestro estudio es conocer dichos cambios en un grupo de deportistas y controles sanos (CS).

Métodos: Realizamos una ETT estándar con STI en corredores (DR), luchadores de lucha canaria (DF) y controles sanos (CS). Comparamos los hallazgos morfológicos y funcionales habituales en ETT del VI, además del S y SR longitudinal (L), circunferencial (C) y radial (R).

Resultados: 68 deportistas con ETT y STI (25 DR, 27 DF y 16 CS), todos varones, media de edad de 29 ± 4 años, media años entrenamiento DR y DF $13,2 \pm 7,3$, índice de masa corporal (IMC) y variables ecocardiográficas, así como diferencias de medias entre grupos en la tabla. Respecto a la deformidad del VI mostraron diferencia significativa entre grupos: SRL sistólico (s-1) DR -0.80 ± 0.35 , DF -0.21 ± 0.30 y CS -0.30 ± 0.25 , siendo p 0.05, entre DR frente a DF y CS, así como SRC sistólico (s-1) DR -1.9 ± 0.27 , DF -0.60 ± 0.46 y CS -0.73 ± 1.02 , siendo p 0.001 entre DR frente a DF y CS. En la diástole precoz el SRL también mostró diferencias significativas (s-1) 1.27 ± 0.58 en DR frente a 0.37 ± 0.29 en DF y 0.29 ± 0.30 en CS, respectivamente, p 0.05.

Características ecocardiográficas de corredores (DR), luchadores (DF) y controles (CS)						
Variable	DR	DF	CS	Significación		
IMC (kg/m ²)	22,7 ± 1,8	$33,6 \pm 3,8$	$26,7 \pm 2,8$	p 0,001		
Masa VI (g)	212,5 ± 49	230 ± 32	170 ± 40	p 0,001		
Índice MVI (g/m²)	112 ± 23	97 ± 12	71 ± 31	p 0,001		

$66,2 \pm 7,6$	64,3 ± 6,4	$62 \pm 7,2$	NS
12,7 ± 2,1	10.8 ± 2.4	11,9 ± 1,2	p 0,05
8,5 ± 1,8	8,4 ± 1,7	8,9 ± 1,3	NS
9 ± 1,2	9,2 ± 1,3	9,3 ± 1	NS
$7,2 \pm 1,5$	7,9 ± 1,8	7 ± 1,6	NS
-0.797 ± 0.35	-0,21 ± 0,30	- 0,3 ± 0,25	p 0,05
-1,9 ± 0,27	$-0,60 \pm 0,46$	-0,73 ± 1,02	p 0,001
$1,27 \pm 0,58$	$0,37 \pm 0,29$	$0,29 \pm 0,30$	p 0,05
	$12,7 \pm 2,1$ $8,5 \pm 1,8$ $9 \pm 1,2$ $7,2 \pm 1,5$ $-0,797 \pm 0,35$ $-1,9 \pm 0,27$	$12,7 \pm 2,1$ $10,8 \pm 2,4$ $8,5 \pm 1,8$ $8,4 \pm 1,7$ $9 \pm 1,2$ $9,2 \pm 1,3$ $7,2 \pm 1,5$ $7,9 \pm 1,8$ $-0,797 \pm 0,35$ $-0,21 \pm 0,30$ $-1,9 \pm 0,27$ $-0,60 \pm 0,46$	$12,7 \pm 2,1$ $10,8 \pm 2,4$ $11,9 \pm 1,2$ $8,5 \pm 1,8$ $8,4 \pm 1,7$ $8,9 \pm 1,3$ $9 \pm 1,2$ $9,2 \pm 1,3$ $9,3 \pm 1$ $7,2 \pm 1,5$ $7,9 \pm 1,8$ $7 \pm 1,6$ $-0,797 \pm 0,35$ $-0,21 \pm 0,30$ $-0,3 \pm 0,25$ $-1,9 \pm 0,27$ $-0,60 \pm 0,46$ $-0,73 \pm 1,02$

IMC: índice masa corporal. FEVI: fracción eyección VI. DTI: Doppler tisular. SRL: *strain* rate longitudinal sistólica. SRC: *strain* rate circunferencial sistólico. SRL-E: *strain* rate longitudinal diastólico precoz.

Conclusiones: En nuestra muestra en DR hay un aumento significativo, respecto a DF y CS, tanto en el SRL y SRC sistólicos, como en el SRL-E diastólico, no mostrando tales diferencias otros parámetros clásicos de evaluación de la función sistólica como la FEVI, o de la diastólica como el ratio E/e´. La técnica STI permite determinar cambios sutiles en la función sistólica y diastólica del VI sugestivos de un proceso adaptativo específico al incremento de las fuerzas hemodinámicas según el tipo de deporte.