

Revista Española de Cardiología

5028-3. MAPEO DE LA TASA DE CRECIMIENTO AÓRTICO MEDIANTE REGISTRO DEFORMABLE DE IMÁGENES DE ANGIOGRAFÍA DE RESONANCIA MAGNÉTICA CON SINCRONIZACIÓN CARDIACA

Lydia Dux-Santoy Hurtado¹, Juan Garrido-Oliver¹, José Rodríguez-Palomares¹, Gisela Teixidó-Turà¹, Aroa Ruiz Muñoz¹, Guillem Casas¹, Filipa Valente¹, Laura Galián Gay¹, Rubén Fernández-Galera¹, Hug Cuellar-Calabria², Gemma Burcet², Antón Aubanell², Arturo Evangelista¹, Ignacio Ferreira González³ y Andrea Guala¹

¹Servicio de Cardiología, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER-CV, Barcelona, ²Servicios de Radiología y Medicina Nuclear, Institut de Diagnòstic per la Imatge, Hospital Universitari Vall d'Hebron, Barcelona y ³Servicio de Cardiología, Vall d'Hebron Institut de Recerca, Hospital Universitario Vall d'Hebron, Universitat Autònoma de Barcelona, CIBER-ESP, Barcelona.

Resumen

Introducción y objetivos: Se ha demostrado recientemente que es posible mapear de crecimiento aórtico 3D (*aortic growth mapping*, AGM) mediante registro deformable de imagen aplicado a angiografías de tomografía computarizada (TC) con contraste. Sin embargo, la exposición a la radiación hace conveniente limitar el uso del TC en el seguimiento seriado, especialmente en pacientes jóvenes. Este trabajo evalúa la exactitud y reproducibilidad de la técnica AGM aplicada a angiografía de resonancia magnética (MRA) con sincronización cardiaca.

Métodos: Se incluyeron 15 pacientes con dos MRA obtenidas con al menos un año de diferencia. Dos observadores independientes midieron los diámetros en la raíz y la aorta torácica manualmente (reconstrucción multiplanar) y con la técnica AGM. Para aplicar AGM, cada observador segmentó la aorta torácica y situó diferentes puntos de referencia anatómica. Se aplicó registro deformable de imágenes para mapear las MRA basal y de seguimiento. La transformación resultante se aplicó a los puntos de la superficie aórtica basal para obtener su posición en el seguimiento. Finalmente, se obtuvieron automáticamente mapas 3D de diámetros aórticos y tasa de crecimiento (FIG A). Se evaluó la concordancia entre las técnicas y su reproducibilidad interobservador.

Resultados: La edad de los pacientes fue 27.2 ± 14.5 años y el seguimiento fue de 2.7 ± 1.6 años. Comparada con la medición manual, las medidas de AGM presentaron bajo sesgo y excelente concordancia para el diámetro (tabla), y bajo sesgo y moderada concordancia para la tasa de crecimiento (tabla, fig. B). Las técnicas presentaron similar reproducibilidad interobservador en la evaluación de los diámetros (tabla), mientras que el AGM demostró una reproducibilidad interobservador mucho mayor en la evaluación de la tasa de crecimiento (tabla, fig. C y D). El mapeo tridimensional de los diámetros y el crecimiento de la aorta torácica presentó alta reproducibilidad (ICC regional medio = 0.90 para los diámetros; 0.82 para la tasa de crecimiento).

Concordancia manual-AGM y reproducibilidad interobservador

Concordancia entre técnicas

		Diámetro		Tasa de crecimiento	
		Diferencia media (LdC) (mm)	CCI	Diferencia media (LdC) (mm/año)	CCI
	Raíz aórtica	-0,60(-3,49,2,29)	0,98	0,25 (-0,92,1,42)	0,63
	Aorta torácica	-0,40(-2,67, 1,87)	0,99	0,15 (-0,80,1,10)	0,72
	Reproducibilidad interobservador				
		Diámetro		Tasa de crecimiento	
		Diferencia media (LdC) (mm)	CCI	Diferencia media (LdC) (mm/año)	CCI
Raíz aórtica	Manual	-0,18 (-3,54,3,18)	0,97	0,31 (-1,17,1,80)	0,69
	AGM	-1,01 (-4,20, 2,18)	0,97	-0,01(-0,41, 0,39)	0,95
Aorta torácica	Manual	-0,60 (-2,61, 1,41)	0,99	-0,07 (-1,01, 0,88)	0,77
	AGM	-1,04 (-3,25, 1,18)	0,98	-0,02(-0,49,9,44)	0,96

LdC: límites de concordancia; CCI: coeficiente de correlación intraclase.

Mapeo del crecimiento aórtico (A) y evaluación de la exactitud (B) y reproducibilidad (C, D).

Conclusiones: Mediante registro de imágenes de seguimiento de MRA con sincronización cardiaca es posible mapear la tasa de crecimiento aórtico de forma precisa y reproducible.

Financiación: SEC/FEC-INV-CLI 20/015, RTC2019-007280-1.