Publique en esta revista
Información de la revista
Vol. 6. Núm. D.
Utilidad terapéutica de los ácidos grasos omega-3
Páginas 31D-37D (Junio 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 6. Núm. D.
Utilidad terapéutica de los ácidos grasos omega-3
Páginas 31D-37D (Junio 2006)
Utilidad terapéutica de los ácidos grasos omega-3
Acceso a texto completo
Efectos antitrombóticos y antiinflamatorios de los ácidos grasos omega-3
Antithrombotic and Antiinflammatory Effects of Omega-3 Fatty Acids
Visitas
...
Antonio López Farré??
Autor para correspondencia
lcarinv.hcsc@salud.madrid.org

Correspondencia: Dr. A. López Farré. Unidad de Investigación Cardiovascular. Hospital Clínico San Carlos. Prof. Martín Lagos, s/n. 28040 Madrid. España.
, Carlos Macaya
Unidad de Investigación Cardiovascular. Instituto Cardiovascular. Hospital Clínico San Carlos. Madrid. España
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Los ácidos grasos poliinsaturados de la dieta pueden clasificarse en dos tipos: ácidos grasos omega-3 (n-3) y ácidos grasos omega-6 (n-6). Los ácidos grasos n-3 se metabolizan en el organismo dando lugar a diferentes ácidos grasos n-3, y los de un mayor interés desde el punto de vista cardiovascular son los de cadena larga (PUFA n-3).

Tres mecanismos principales parecen estar involucrados en el efecto protector cardiovascular de los ácidos grasos n-3: su efecto antiinflamatorio, su efecto antitrombótico y su acción antiarrítmica. En cuanto a su efecto antitrombótico, hay datos experimentales que indican que la ingesta de ácidos grasos omega-3 tiene un efecto antitrombótico principalmente mediado por una reducción en la formación de tromboxano. Se disponde de datos sobre su efecto antiinflamatorio que demuestran la reducción en la expresión de proteínas de adhesión. Sin embargo, en los estudios de intervención dietética en humanos estos 2 efectos no se repiten de forma consistente en todos los estudios publicados. En esta revisión se analizan los diferentes mecanismos de acción antitrombótica y antiinflamatoria de los ácidos grasos omega-3.

Palabras clave:
Ácidos grasos omega-3
Plaquetas
Leucocitos
Inflamación
Tromboxano A2
Abreviaturas:
DHA
DPA
EPA
ICAM-1
MCP-1
PAF
PF4
PGH2
PGI2
PPAR-γ
PUFA
VCAM-1

Dietary polyunsaturated fatty acids can be classified into two main subtypes: omega-3 (n-3) fatty acids and omega-6 (n-6) fatty acids. Omega-3 fatty acids are metabolized in the body into a variety of other omega-3 fatty acids. From the point of view of cardiovascular disease, the most relevant are long-chain omega-3 polyunsaturated fatty acids (omega-3 PUFAs). The cardioprotective effects of omega-3 fatty acids appear to result from three main mechanisms: anti-inflammatory, antithrombotic and anti-arrhythmic mechanisms. With regard to the compounds’ antithrombotic effects, experimental findings indicate that intake of omega-3 fatty acids reduces thromboxane A2 synthesis. The antiinflammatory properties of omega-3 PUFAs seem to be related to their ability to downregulate expression of adhesion proteins. However, these antithrombotic and anti-inflammatory effects have not been consistently observed in dietary modification studies in humans. In this review, we discuss the different mechanisms of action by which omega-3 fatty acids could exert their antithrombotic and anti-inflammatory effects.

Key words:
Omega-3 fatty acids
Platelets
Leukocytes
Inflammation
Thromboxane A2
El Texto completo está disponible en PDF
Bibliografía
[1.]
H.O. Bang, J. Dyerberg, H.M. Sinclair.
The composition of the Eskimo food in north western Greenland.
Am J Clin Nutr, 33 (1980), pp. 2657-2661
[2.]
Y. Kinjo, V. Beral, S. Akiba, T. Key, S. Mizuno, P. Appleby, et al.
Possible protective effect of milk, meat and fish for cerebrovascular disease mortality in Japan.
J Epidemiol, 9 (1999), pp. 268-274
[3.]
C.M. Albert, C.H. Hennekens, C.J. O’Donnell, U.A. Ajani, V.J. Carey, W.C. Willett, et al.
Fish consumption and risk of sudden cardiac death.
JAMA, 279 (1998), pp. 23-28
[4.]
J.M. Wallace, E. Turley, W.S. Gilmore, J.J. Strain.
Dietary fish oil supplementation alters leukocyte function and cytokine production in healthy women.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 185-189
[5.]
E.A. Miles, F. Thies, F.A. Wallace, J.R. Powell, T.L. Hurst, E.A. Newsholme, et al.
Influence of age and dietary fish oil on plasma soluble adhesion molecule concentrations.
Clin Sci (Lond), 100 (2001), pp. 91-100
[6.]
J.M. Geleijnse, E.J. Giltay, D.E. Grobbee, A.R. Donders, F.J. Kok.
Blood pressure response to fish oil supplementation: metaregression analysis of randomized trials.
J Hypertens, 20 (2002), pp. 1493-1499
[7.]
J. Dyerberg, H.O. Bang, E. Stoffersen, S. Moncada, J.R. Vane.
Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis?.
Lancet, 2 (1978), pp. 117-119
[8.]
C. Von Schacky, S. Fischer, P.C. Weber.
Long-term effects of dietary marine omega-3 fatty acids upon plasma and cellular lipids, platelet function, and eicosanoid formation in humans.
J Clin Invest, 76 (1985), pp. 1626-1631
[9.]
C.M. Nieuwenhuys, M.A. Feijge, R.F. Offermans, A.D. Kester, G. Hornstra, J.W. Heemskerk.
Modulation of rat platelet activation by vessel wall-derived prostaglandin and platelet-derived thromboxane: effects of dietary fish oil on thromboxane-prostaglandin balance.
Atherosclerosis, 154 (2001), pp. 355-366
[10.]
R. DeCaterina, D. Giannessi, A. Mazzone, W. Bernini, G. Lazzerini, S. Maffei, et al.
Vascular prostacyclin is increased in patients ingesting omega-3 polyunsaturated fatty acids before coronary artery bypass graft surgery.
Circulation, 82 (1990), pp. 428-438
[11.]
P.C. Weber.
Clinical studies on the effects of n-3 fatty acids on cells and eicosanoids in the cardiovascular system.
J Intern Med Suppl, 731 (1989), pp. 61-68
[12.]
J. Saito, T. Terano, A. Hirai, T. Shiina, Y. Tamura, Y. Saito.
Mechanisms of enhanced production of PGI2 in cultured rat vascular smooth muscle cells enriched with eicosapentaenoic acid.
Atherosclerosis, 131 (1997), pp. 219-228
[13.]
F. Achard, M. Gilbert, C. Benistant, S. Ben Slama, D.L. DeWitt, W.L. Smith, et al.
Eicosapentaenoic and docosahexaenoic acids reduce PGH synthase 1 expression in bovine aortic endothelial cells.
Biochem Biophys Res Commun, 241 (1997), pp. 513-518
[14.]
P.G. Swann, D.L. Venton, G.C. Le Breton.
Eicosapentaenoic acid and docosahexaenoic acid are antagonists at the thromboxane A2/prostaglandin H2 receptor in human platelets.
FEBS Lett, 243 (1989), pp. 244-246
[15.]
M.L. Burr, A.M. Fehily, J.F. Gilbert, S. Rogers, R.M. Holliday, P.M. Sweetnam, et al.
Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART).
Lancet, 2 (1989), pp. 757-761
[16.]
R. Marchioli, F. Barzi, E. Bomba, C. Chieffo, D. Di Gregorio, R. Di Mascio, et al.
Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-Prevenzione.
Circulation, 105 (2002), pp. 1897-1903
[17.]
M.L. Burr, P.A. Ashfield-Watt, F.D. Dunstan, A.M. Fehily, P. Breay, T. Ashton, et al.
Lack of benefit of dietary advice to men with angina: results of a controlled trial.
Eur J Clin Nutr, 57 (2003), pp. 193-200
[18.]
C. Weber, W. Erl, A. Pietsch, U. Danesch, P.C. Weber.
Docosahexaenoic acid selectively attenuates induction of vascular cell adhesion molecule-1 and subsequent monocytic cell adhesion to human endothelial cells stimulated by tumor necrosis factor-alpha.
Arterioscler Thromb Vasc Biol, 15 (1995), pp. 622-628
[19.]
D.A. Hughes, S. Southon, A.C. Pinder.
(n-3) Polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes in vitro.
J Nutr, 126 (1996), pp. 603-610
[20.]
E.A. Miles, F.A. Wallace, P.C. Calder.
Dietary fish oil reduces intercellular adhesion molecule 1 and scavenger receptor expression on murine macrophages.
Atherosclerosis, 152 (2000), pp. 43-50
[21.]
K.H. Baumann, F. Hessel, I. Larass, T. Muller, P. Angerer, R. Kiefl, et al.
Dietary omega-3, omega-6, and omega-9 unsaturated fatty acids and growth factor and cytokine gene expression in unstimulated and stimulated monocytes. A randomized volunteer study.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 59-66
[22.]
F. Thies, J.M. Garry, P. Yaqoob, K. Rerkasem, J. Williams, C.P. Shearman, et al.
Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial.
[23.]
T.H. Lee, R.L. Hoover, J.D. Williams, R.I. Sperling, J. Ravalese 3rd, B.W. Spur, et al.
Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function.
N Engl J Med, 312 (1985), pp. 1217-1224
[24.]
R.I. Sperling, A.I. Benincaso, C.T. Knoell, J.K. Larkin, K.F. Austen, D.R. Robinson.
Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils.
J Clin Invest, 91 (1993), pp. 651-660
[25.]
G.A. Zimmerman, T.M. McIntyre, M. Mehra, S.M. Prescott.
Endothelial cell-associated platelet-activating factor: a novel mechanism for signaling intercellular adhesion.
J Cell Biol, 110 (1990), pp. 529-540
[26.]
K. Mayer, M. Merfels, M. Muhly-Reinholz, S. Gokorsch, S. Rosseau, J. Lohmeyer, et al.
Omega-3 fatty acids suppress monocyte adhesion to human endothelial cells: role of endothelial PAF generation.
Am J Physiol (Heart Circ Physiol), 283 (2002), pp. H811-H818
[27.]
H.S. Finstad, C.A. Drevon, M.A. Kulseth, A.V. Synstad, E. Knudsen, S.O. Kolset.
Cell proliferation, apoptosis and accumulation of lipid droplets in U937-1 cells incubated with eicosapentaenoic acid.
Biochem J, 336 (1998), pp. 451-459
[28.]
B. Sweeney, P. Puri, D. Reen.
Fatty acid modulation of phogocyte apoptosis: a potentially novel mechanism of regulating the innate inflammatory response [abstract].
Immunology, 104 (2001), pp. 49
[29.]
R. De Caterina, W. Bernini, M.A. Carluccio, J.K. Liao, P. Libby.
Structural requirements for inhibition of cytokine-induced endothelial activation by unsaturated fatty acids.
J Lipid Res, 39 (1998), pp. 1062-1070
[30.]
W.R. Leifert, E.J. McMurchie, D.A. Saint.
Inhibition of cardiac sodium currents in adult rat myocytes by n-3 polyunsaturated fatty acids.
J Physiol, 520 (1999), pp. 671-679
[31.]
M. Asano, T. Nakajima, K. Iwasawa, H. Hazama, M. Omata, M. Soma, et al.
Inhibitory effects of omega-3 polyunsaturated fatty acids on receptor-mediated non-selective cation currents in rat A7r5 vascular smooth muscle cells.
Br J Pharmacol, 120 (1997), pp. 1367-1375
[32.]
N. Marx, G. Sukhova, C. Murphy, P. Libby, J. Plutzky.
Macrophages in human atheroma contain PPARgamma: differentiationdependent peroxisomal proliferator-activated receptor gamma (PPARgamma) expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro.
Am J Pathol, 153 (1998), pp. 17-23
[33.]
P. Dandona, P. Mohanty, H. Ghanim, A. Aljada, R. Browne, W. Hamouda, et al.
The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation.
J Clin Endocrinol Metab, 86 (2001), pp. 355-362
[34.]
M.I. Schmidt, B.B. Duncan, A.R. Sharrett, G. Lindberg, P.J. Savage, S. Offenbacher, et al.
Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study.
Lancet, 353 (1999), pp. 1649-1652
[35.]
A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker.
C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA, 286 (2001), pp. 327-334
[36.]
M.S. Nenseter, C.A. Drevon.
Dietary polyunsaturates and peroxidation of low density lipoprotein.
Curr Opin Lipidol, 7 (1996), pp. 8-13
[37.]
M. Arita, F. Bianchini, J. Aliberti, A. Sher, N. Chiang, S. Hong, et al.
Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1.
J Exp Med, 201 (2005), pp. 713-722
Copyright © 2006. Sociedad Española de Cardiología
Idiomas
Revista Española de Cardiología

Suscríbase a la newsletter

Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?