Publique en esta revista
Información de la revista
Vol. 7. Núm. H.
Diabetología para cardiólogos
Páginas 20H-28H (Octubre 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 7. Núm. H.
Diabetología para cardiólogos
Páginas 20H-28H (Octubre 2007)
Diabetología para cardiólogos
Acceso a texto completo
Hipertensión arterial y dislipemia asociadas a diabetes mellitus. Papel de los PPAR. Enfoque terapéutico
Arterial Hypertension and Dyslipidemia in Diabetes Mellitus. The Role of PPARs. Therapeutic Implications
Visitas
119
Vicente Bertomeu-González, Daniel Núñez Pernas, Vicente Bertomeu Martínez
Autor para correspondencia
vbertomeu@secardiologia.es

Correspondencia: Dr. V. Bertomeu Martínez. Servicio de Cardiología. Hospital Universitario de San Juan. Ctra. Alicante-Valencia, s/n. 03550 Alicante. España.
Servicio de Cardiología. Hospital Universitario de San Juan. Alicante. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

El descubrimiento del papel de los ácidos grasos libres en el desarrollo de la diabetes y sus complicaciones ha supuesto un cambio en el enfoque terapéutico de la diabetes. El exceso de ácidos grasos libres plasmáticos produce un estado de hiperinsulinismo que está íntimamente relacionado con la aparición de las alteraciones metabólicas y el desarrollo de hipertensión arterial y de complicaciones vasculares en pacientes diabéticos. Los receptors activadores de la proliferación peroxisomal (PPAR), al ser estimulados, favorecen la acción de la insulina al reducir las concentraciones de ácidos grasos libres plasmáticos, reducir la producción hepática de glucosa y aumentar la captación de ésta por parte del músculo esquelético. Las glitazonas, como agonistas de dichos receptores, aportan beneficios importantes en el tratamiento de pacientes con diabetes mellitus tipo 2.

Palabras clave:
Diabetes mellitus
Hipertensión
PPAR gamma
Abreviaturas:
AGL
ARA-II
HDL
IECA
LDL
PPAR
VLDL

The discovery that free fatty acids play a role in the development of diabetes and its complications has brought about a change in the therapeutic approach to the disorder. In diabetic patients, an excessively high free fatty acid plasma level results in a state of hyperinsulinemia which is closely associated with the appearance of metabolic abnormalities and the development of hypertension and cardiovascular complications. The stimulation of peroxisome proliferatoractivated receptors (PPARs) promotes the action of insulin by reducing the plasma free fatty acid level, reducing hepatic glucose production, and increasing skeletal muscle glucose uptake. Glitazones, which act as PPAR agonists, offer significant benefits in the treatment of patients with type-2 diabetes mellitus.

Key words:
Diabetes mellitus
Hypertension
PPAR-gamma
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.D. McGarry.
What if Minkowski had been ageusic? An alternative angle on diabetes.
Science, 258 (1992), pp. 766-770
[2.]
L. Guo, R. Tabrizchi.
Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance.
Pharmacol Ther, 111 (2006), pp. 145-173
[3.]
A. Chawla, J.J. Repa, R.M. Evans, D.J. Mangelsdorf.
Nuclear receptors and lipid physiology: opening the X-files.
Science, 294 (2001), pp. 1866-1870
[4.]
A. Chawla, E.J. Schwarz, D.D. Dimaculangan, M.A. Lazar.
Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation.
Endocrinology, 135 (1994), pp. 798-800
[5.]
F. Blaschke, Y. Takata, E. Caglayan, R.E. Law, W.A. Hsueh.
Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes.
Arterioscler Thromb Vasc Biol, 26 (2006), pp. 28-40
[6.]
A.R. Saltiel, J.M. Olefsky.
Thiazolidinediones in the treatment of insulin resistance and type II diabetes.
Diabetes, 45 (1996), pp. 1661-1669
[7.]
S. Schwartz, P. Raskin, V. Fonseca, J.F. Graveline.
Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group.
N Engl J Med, 338 (1998), pp. 861-866
[8.]
J.P. Van Wijk, E.J. De Koning, E.P. Martens, T.J. Rabelink.
Thiazolidinediones and blood lipids in type 2 diabetes.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 1744-1749
[9.]
B.B. Kahn, J.S. Flier.
Obesity and insulin resistance.
J Clin Invest, 106 (2000), pp. 473-481
[10.]
M.I. Freed, R. Ratner, S.M. Marcovina, M.M. Kreider, N. Biswas, B.R. Cohen, et al.
Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus.
Am J Cardiol, 90 (2002), pp. 947-952
[11.]
N. Maeda, M. Takahashi, T. Funahashi, S. Kihara, H. Nishizawa, K. Kishida, et al.
PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.
Diabetes, 50 (2001), pp. 2094-2099
[12.]
N. Marx, J. Froehlich, L. Siam, J. Ittner, G. Wierse, A. Schmidt, et al.
Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease.
Arterioscler Thromb Vasc Biol, 23 (2003), pp. 283-288
[13.]
P. Delerive, F. Martin-Nizard, G. Chinetti, F. Trottein, J.C. Fruchart, J. Najib, et al.
Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway.
Circ Res, 85 (1999), pp. 394-402
[14.]
V.E. Crowley, M. Agostini, J.W. Schwabe, M.A. Soos, G.L. Maslen, T.D. Williams, et al.
Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension.
Nature, 402 (1999), pp. 880-883
[15.]
Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, et al.
Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity.
Cell, 113 (2003), pp. 159-170
[16.]
J.V. Neel.
Diabetes mellitus: a «thrifty» genotype rendered detrimental by «progress»?.
Am J Human Genet, 14 (1962), pp. 353-362
[17.]
A.R. Saltiel, C.R. Kahn.
Insulin signalling and the regulation of glucose and lipid metabolism.
Nature, 414 (2001), pp. 799-806
[18.]
F.X. Pi-Sunyer.
The obesity epidemic: pathophysiology and consequences of obesity.
Obes Res, 10 (2002), pp. 97S-104S
[19.]
S.M. Haffner, M.P. Stern, H.P. Hazuda, B.D. Mitchell, J.K. Patterson.
Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes?.
JAMA, 263 (1990), pp. 2893-2898
[20.]
S.R. Crespin, W.B. Greenough, D. Steinberg.
Stimulation of insulin secretion by long-chain free fatty acids: a direct pancreatic effect.
J Clin Invest, 52 (1973), pp. 1979-1984
[21.]
R.H. Unger.
Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications.
Diabetes, 44 (1995), pp. 863-870
[22.]
Y.P. Zhou, V. Grill.
Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans.
J Clin Endocrinol Metab, 80 (1995), pp. 1584-1590
[23.]
M. Roden, T.B. Price, G. Perseghin, K.F. Petersen, D.L. Rothman, G.W. Cline, et al.
Mechanism of free fatty acid-induced insulin resistance in humans.
J Clin Invest, 97 (1996), pp. 2859-2865
[24.]
G. Boden, X. Chen.
Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes.
J Clin Invest, 96 (1995), pp. 1261-1268
[25.]
G. Boden, P. Cheung, T.P. Stein, K. Kresge, M. Mozzoli.
FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis.
Am J Physiol Endocrinol Metab, 283 (2002), pp. 12-19
[26.]
P. Peraldi, B. Spiegelman.
TNF-alpha and insulin resistance: summary and future prospects.
Mol Cell Biochem, 182 (1998), pp. 169-175
[27.]
A.D. Pradhan, J.E. Manson, N. Rifai, J.E. Buring, P.M. Ridker.
C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.
JAMA, 286 (2001), pp. 327-334
[28.]
C.M. Steppan, S.T. Bailey, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, et al.
The hormone resistin links obesity to diabetes.
Nature, 409 (2001), pp. 307-312
[29.]
C. Weyer, T. Funahashi, S. Tanaka, K. Hotta, Y. Matsuzawa, R.E. Pratley, et al.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.
J Clin Endocrinol Metab, 86 (2001), pp. 1930-1935
[30.]
T. Yamauchi, J. Kamon, Y. Ito, A. Tsuchida, T. Yokomizo, S. Kita, et al.
Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.
Nature, 423 (2003), pp. 762-769
[31.]
N. Ouchi, S. Kihara, Y. Arita, Y. Okamoto, K. Maeda, H. Kuriyama, et al.
Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappa B signaling through a cAMP-dependent pathway.
Circulation, 102 (2000), pp. 1296-1301
[32.]
C.D. Gardner, S.P. Fortmann, R.M. Krauss.
Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women.
JAMA, 276 (1996), pp. 875-881
[33.]
B. Lamarche, A. Tchernof, S. Moorjani, B. Cantin, G.R. Dagenais, P.J. Lupien, et al.
Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study.
Circulation, 95 (1997), pp. 69-75
[34.]
J. Jeppesen, H.O. Hein, P. Suadicani, F. Gyntelberg.
Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease: an 8-year follow-up in the Copenhagen Male Study.
Arterioscler Thromb Vasc Biol, 17 (1997), pp. 1114-1120
[35.]
H.C. Gerstein, S. Yusuf, J. Bosch, J. Pogue, P. Sheridan, N. Dinccag, DREAM (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial, et al.
Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial.
Lancet, 368 (2006), pp. 1096-1105
[36.]
F. Heller, C. Harvengt.
Effects of clofibrate, bezafibrate, fenofibrate and probucol on plasma lipolytic enzymes in normolipaemic subjects.
Eur J Clin Pharmacol, 25 (1983), pp. 57-63
[37.]
K. Schoonjans, J. Peinado-Onsurbe, A.M. Lefebvre, R.A. Heyman, M. Briggs, S. Deeb, et al.
PPAR alpha and PPAR gamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene.
Embo J, 15 (1996), pp. 5336-5348
[38.]
B. Staels, J. Dallongeville, J. Auwerx, K. Schoonjans, E. Leitersdorf, J.C. Fruchart.
Mechanism of action of fibrates on lipid and lipoprotein metabolism.
Circulation, 98 (1998), pp. 2088-2093
[39.]
I. Lemieux, L. Laperriere, V. Dzavik, G. Tremblay, J. Bourgeois, J.P. Despres.
A 16-week fenofibrate treatment increases LDL particle size in type IIA dyslipidemic patients.
Atherosclerosis, 162 (2002), pp. 363-371
[40.]
Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet. 2001;357:905-10.
[41.]
C.G. Ericsson, J. Nilsson, L. Grip, B. Svane, A. Hamsten.
Effect of bezafibrate treatment over five years on coronary plaques causing 20% to 50% diameter narrowing (The Bezafibrate Coronary Atherosclerosis Intervention Trial [BECAIT]).
Am J Cardiol, 80 (1997), pp. 1125-1129
[42.]
J.K. Huttunen, V. Manninen, M. Manttari, P. Koskinen, M. Romo, L. Tenkanen, et al.
The Helsinki Heart Study: central findings and clinical implications.
Ann Med, 23 (1991), pp. 155-159
[43.]
H.B. Rubins, S.J. Robins, D. Collins, C.L. Fye, J.W. Anderson, M.B. Elam, et al.
Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group.
N Engl J Med, 341 (1999), pp. 410-418
[44.]
P.R. Devchand, H. Keller, J.M. Peters, M. Vazquez, F.J. Gonzalez, W. Wahli.
The PPAR alpha-leukotriene B4 pathway to inflammation control.
Nature, 384 (1996), pp. 39-43
[45.]
G.L. Plosker, D. Faulds.
Troglitazone: a review of its use in the management of type 2 diabetes mellitus.
Drugs, 57 (1999), pp. 409-438
[46.]
T. Meriden.
Progress with thiazolidinediones in the management of type 3 diabetes mellitus.
Clin Ther, 26 (2004), pp. 177-190
[47.]
M. St John Sutton, M. Rendell, P. Dandona, J.F. Dole, K. Murphy, R. Patwardhan, et al.
A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes.
Diabetes Care, 25 (2002), pp. 2058-2064
[48.]
J.S. Sidhu, D. Cowan, J.A. Tooze, J.C. Kaski.
Peroxisome proliferator-activated receptor-gamma agonist rosiglitazone reduces circulating platelet activity in patients without diabetes mellitus who have coronary artery disease.
Am Heart J, 147 (2004),
[49.]
M.I. Freed, R. Ratner, S.M. Marcovina, M.M. Kreider, N. Biswas, B.R. Cohen, et al.
Rosiglitazone Study 108 investigators: effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus.
Am J Cardiol, 90 (2002), pp. 947-952
[50.]
S. Rosenblatt, B. Miskin, N.B. Glazer, M.J. Prince, K.E. Robertson.
The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus.
Coron Artery Dis, 12 (2001), pp. 413-423
[51.]
Y. Mori, Y. Murakawa, K. Okada, H. Horikoshi, J. Yokoyama, N. Tajima, et al.
Effect of troglitazone on body fat distribution in type 2 diabetic patients.
Diabetes Care, 22 (1999), pp. 908-912
[52.]
I. Kelly, T. Han, K. Walsh, M. Lean.
Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes.
Diabetes Care, 22 (1999), pp. 288-293
[53.]
C.T. Montague, S. O’Rahilly.
The perils of portliness: causes and consequences of visceral adiposity.
Diabetes, 49 (2000), pp. 883-888
[54.]
M. Adams, C.T. Montague, J.B. Prins, J.C. Holder, S.A. Smith, L. Sanders, et al.
Activators of peroxisome proliferatoractivated receptor gamma have depot specific effects on human preadipocyte differentiation.
J Clin Invest, 100 (1997), pp. 3149-3153
[55.]
C.J. De Souza, M. Eckhardt, K. Gagen, M. Dong, W. Chen, D. Laurent, et al.
Effects of pioglitazone on adipose tissue remodeling within the setting of obesity and insulin resistance.
Diabetes, 50 (2001), pp. 1863-1871
[56.]
A consensus statement from the American Heart Association and American Diabetes Association, Thiazolidinedione use, fluid retention, and congestive heart failure. Diabetes Care. 2004;27:256-63.
[57.]
S.E. Nissen, K. Wolski.
Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes.
N Engl J Med, 356 (2007), pp. 2457-2471
[58.]
GSK medicine ZM2006/00207/00. Disponible en: http://ctr.gsk.co.uk/Summary/Rosiglitazone/III_CVmodeling.pdf.
[59.]
P.D. Home, S.J. Pocock, H. Beck-Nielsen, R. Gomis, M. Hanefeld, N.P. Jones, et al.
Rosiglitazone evaluated for cardiovascular outcomes — an interim analysis.
N Engl J Med, Jun 5 (2007),
[60.]
J.A. Dormandy, B. Charbonnel, D.J. Eckland, E. Erdmann, M. Massi-Benedetti, I.K. Moules, et al.
Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.
Lancet, 8 (2005), pp. 1279-1289
[61.]
E. Ferrannini, G. Buzzigoli, R. Bonadonna, M.A. Giorico, M. Oleggini, L. Graziadei, et al.
Insulin resistance in essential hypertension.
N Engl J Med, 317 (1987), pp. 350-357
[62.]
A. Natali, A. Quinones Galvan, D. Santoro, N. Pecori, S. Taddei, A. Salvetti, et al.
Relationship between insulin release, antinatriuresis and hypokalaemia after glucose ingestion in normal and hypertensive man.
Clin Sci, 85 (1993), pp. 327-335
[63.]
L. Landsberg.
Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why).
J Hypertens, 19 (2001), pp. 523-528
[64.]
M. Laakso, S.V. Edelman, G. Brechtel, A.D. Baron.
Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM.
Diabetes, 41 (1992), pp. 1076-1083
[65.]
M. Barbagallo, R.K. Gupta, O. Bardicef, M. Bardicef, L.M. Resnick.
Altered ionic effects of insulin in hypertension: role of basal ion levels in determining cellular responsiveness.
J Clin Endocrinol Metab, 82 (1997), pp. 1761-1765
[66.]
P.A. Sarafidis, A.N. Lasaridis.
Actions of peroxisome proliferatoractivated receptors-γ agonists explaining a possible blood pressure–lowering effect.
Am J Hypertens, 19 (2006), pp. 646-653
[67.]
J.S. Sidhu, D. Cowan, J.C. Kaski.
The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients.
J Am Coll Cardiol, 42 (2003), pp. 1757-1763
[68.]
C.B. Patel, J.A. De Lemos, K.L. Wyne, D.K. McGuire.
Thiazolidinediones and risk for atherosclerosis: pleotropic effects of PPAR Gamma agonism.
Diab Vasc Dis Res, 3 (2006), pp. 65-71
[69.]
G.A. Knock, S.K. Mishra, P.I. Aaronson.
Differential effects of insulin-sensitizers troglitazone and rosiglitazone on ions currents in rat vascular myocytes.
Eur J Pharmacol, 368 (1999), pp. 103-109
[70.]
F. Zhang, J.R. Sowers, J.L. Ram, P.R. Standley, J.D. Peuler.
Effects of pioglitazone on calcium channels in vascular smooth muscle.
Hypertension, 24 (1994), pp. 170-175
[71.]
R.E. Law, S. Goetz, X.P. Xi, S. Jackson, Y. Kawano, L. Demer, et al.
Expression and function of PPAR-? in rat and human vascular smooth muscle cells.
Circulation, 101 (2000), pp. 1311-1318
[72.]
S. Fujishima, Y. Ohya, Y. Nakamura, U. Onaka, I. Abe, M. Fujishima.
Troglitazone, an insulin sensitizer, increases forearm blood flow in humans.
Am J Hypertens, 11 (1998), pp. 1134-1137
[73.]
P.A. Sarafidis, A.N. Lasaridis, P.M. Nilsson, E.M. Pagkalos, A.D. Hitoglu-Makedou, C.I. Pliakos, et al.
Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlates with insulin sensitivity increase.
J Hypertens, 22 (2004), pp. 1769-1777
[74.]
A. Raji, E.W. Seely, S.A. Bekins, G.H. Williams, D.C. Simonson.
Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients.
Diabetes Care, 26 (2003), pp. 172-178
[75.]
R. Negro, D. Dazzi, H. Hassan, A. Pezzarossa.
Pioglitazone reduces blood pressure in non-dipping diabetic patients.
Minerva Endocrinol, 29 (2004), pp. 11-17
[76.]
R. Negro, T. Mangieri, D. Dazzi, A. Pezzarossa, H. Hassan.
Rosiglitazone effects on blood pressure and metabolic parameters in nondipper diabetic patients.
Diabetes Res Clin Pract, 70 (2005), pp. 20-25
[77.]
P.A. Sarafidis, A.N. Lasaridis, P.M. Nilsson, A.D. Hitoglou-Makedou, E.M. Pagkalos, J.G. Yovos, et al.
The effect of rosiglitazone on urine albumin excretion in patients with type 2 diabetes mellitus and hypertension.
Am J Hypertens, 18 (2005), pp. 227-234
[78.]
J.S. Sidhu, Z. Kaposzta, H.S. Markus, J.C. Kaski.
Effect of rosiglitazone on common carotid intima-media thickness progression in coronary artery disease patients without diabetes mellitus.
Arterioscler Thromb Vasc Biol, 24 (2004), pp. 930-934
[79.]
W.J. Elliott, P.M. Meyer.
Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis.
[80.]
L. Hansson, L.H. Lindholm, L. Niskanen, J. Lanke, T. Hedner, A. Niklason, et al.
Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial.
Lancet, 353 (1999), pp. 611-616
[81.]
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group.
The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT).
JAMA, 288 (2002), pp. 2998-3007
[82.]
S. Yusuf, P. Sleight, J. Pogue, J. Bosch, R. Davies, G. Dagenais.
Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators.
N Engl J Med, 342 (2000), pp. 145-153
[83.]
B. Dahlof, R.B. Devereux, S.E. Kjeldsen, S. Julius, G. Beevers, U. De Faire, LIFE Study Group, et al.
Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol.
Lancet, 359 (2002), pp. 995-1003
[84.]
S. Julius, Se. Kjeldesen, M. Weber, H.R. Brunner, S. Ekman, L. Hansson, et al.
VALUE trial group Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: the VALUE randomised trial.
Lancet, 363 (2004), pp. 2022-2031
[85.]
M.A. Pfeffer, K. Swedberg, C.B. Granger, P. Held, J.J. McMurray, E.L. Michelson, CHARM Investigators and Committees, et al.
Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme.
Lancet, 362 (2003), pp. 759-766
[86.]
S.C. Benson, H.A. Pershadsingh, C.I. Ho, A. Chittiboyina, P. Desai, M. Pravenec, et al.
Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPAR gamma-modulating activity.
Hypertension, 43 (2004), pp. 993-1002
[87.]
M.C. Michel, H. Bohner, J. Koster, R. Schafers, U. Heemann.
Safety of telmisaran in patients with arterial hypertension: an open-label observational study.
Drug Saf, 27 (2004), pp. 335-344
[88.]
C. Vitale, G. Mercuro, C. Castiglioni, A. Cornoldi, A. Tulli, M. Fini, et al.
Metabolic effect of termisartan and losartan in hypertensive patients with metabolic syndrome.
Cardiovasc Diabetol, 15 (2005), pp. 5-6
[89.]
G. Derosa, P.D. Ragonesi, A. Mugellini, L. Ciccarelli, R. Fogari.
Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebocontrolled 12-month study.
Hypertens Res, 27 (2004), pp. 457-464
[90.]
R.C. Turner, H. Millns, H.A. Neil, I.M. Stratton, S.E. Manley, D.R. Matthews, et al.
Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23).
BMJ, 316 (1998), pp. 823-828
[91.]
L. Ryden, E. Standl, M. Bartnik, G. Van den Berghe, J. Betteridge, M.J. De Boer, Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD), et al.
Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the study of Diabetes (EASD).
Eur Heart J, 28 (2007), pp. 88-136
[92.]
J. Lindström, P. Ilanne-Parikka, M. Peltonen, S. Aunola, J.G. Eriksson, K. Hemiö, et al.
Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: follow-up of the Finnish Diabetes Prevention Study.
Lancet, 368 (2006), pp. 1673-1679
[93.]
D. Nathan, M. Berkwits.
Trials that matter: rosiglitazone, ramipril and the prevention of type 2 diabetes.
Ann Intern Med, 146 (2007), pp. 461-463
[94.]
B. Ljung, K. Bamberg, B. Dahllof, A. Kjellstedt, N.D. Oakes, J. Ostling, et al.
AZ 242, a novel PPARa/g agonist with beneficial effects on insulin resistance and carbohydrate and lipid metabolism in ob/ob mice and obese Zucker rats.
J Lipid Res, 43 (2002), pp. 1855-1863
[95.]
B.K. Skrumsager, K.K. Nielsen, M. Muller, G. Pabst, P.G. Drake, B. Edsberg.
Ragaglitazar: the pharmacokinetics, pharmacodynamics, and tolerability of a novel dual PPAR alpha and gamma agonist in healthy subjects and patients with type 2 diabetes.
J Clin Pharmacol, 43 (2003), pp. 1244
[96.]
S.E. Nissen, K. Wolski, E.J. Topol.
Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus.
Copyright © 2007. Sociedad Española de Cardiología
Idiomas
Revista Española de Cardiología

Suscríbase a la newsletter

Ver histórico de newsletters
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?