Publique en esta revista
Información de la revista
Vol. 7. Núm. A.
Hipertensión arterial, nefropatía diabética y riesgo cardiovascular
Páginas 9A-22A (Marzo 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 7. Núm. A.
Hipertensión arterial, nefropatía diabética y riesgo cardiovascular
Páginas 9A-22A (Marzo 2007)
Hipertensión arterial, nefropatía diabética y riesgo cardiovascular
DOI: 10.1016/S1131-3587(07)75231-7
Acceso a texto completo
La diabetes mellitus tipo 2 como enfermedad cardiovascular
Type-2 Diabetes Mellitus as a Cardiovascular Disease
Visitas
...
Arturo Corbatón Anchuelo, Rafael Cuervo Pinto, Manuel Serrano Ríos??
Autor para correspondencia
mserrano.hcsc@salud.madrid.org

Correspondencia: Dr. M. Serrano Ríos. Servicio de Medicina Interna II. Hospital Clínico San Carlos. Universidad Complutense de Madrid. Prof. Martín Lagos, s/n. 28040 Madrid. España.
Servicio de Medicina Interna II. Hospital Clínico San Carlos. Universidad Complutense de Madrid. España
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

La diabetes mellitus (DM) y en particular el tipo 2, que representa alrededor del 90% del total, es un problema de salud pública de gran dimensión, tanto por su elevada y cada vez mayor prevalencia, como por sus consecuencias cardiovasculares. El proceso aterosclerótico se acelera en la hiperglucemia y la insulinorresistencia (IR). La obesidad predispone a la DM2, la HTA, la dislipidemia y la ateromatosis y se asocia con IR y respuestas proinflamatorias que conducen a intolerancia hidrocarbonada (IH) y a un perfil aterogénico. La disfunción endotelial y las moléculas de adhesión han sido factores desconocidos hasta hace pocos años, y que parecen desempeñar un papel significativo en el binomio hiperglucemia/aterosclerosis. La incidencia de insuficiencia cardiaca es mayor en la hiperglucemia/DM, tanto por lesión coronaria como por miocardiopatía. En la actualidad, existen multiples fármacos cuyas dianas son la aterosclerosis y/o la hiperglucemia, manifestaciones que pueden ser iniciales o tardías, respectivamente, en la evolución de la DM tipo 2; la morbimortalidad se ha reducido significativamente en los últimos decenios.

Palabras clave:
Diabetes mellitus tipo 2
Obesidad abdominal
Dislipidemia aterogénica
Sintetasa del óxido nítrico
Moléculas de adhesión
Abreviaturas:
ACVA
ARA2
DIGAMI
DM
EC
ECV
EVP
HbA1c
HTA
IAM
IC
IH
IFN-γ
IL
SM
PCR
Tgs
TNF-α
UKPDS
WHO

Diabetes mellitus, and in particular type-2 diabetes mellitus, which accounts for around 90% of cases, is a major public health problem, as much because of its high and increasing prevalence, as because of its cardiovascular implications. Atherosclerotic processes are accelerated by hyperglycemia and insulin resistance. Obesity is a predisposing factor for type-2 diabetes mellitus, hypertension, dyslipidemia and atheromatosis, and is associated with insulin resistance and proinflammatory responses that result in carbohydrate intolerance and an atherogenic profile. Endothelial dysfunction and cell adhesion molecules have only been recognized as risk factors in the last few years. Moreover, they appear to play an important role in the conjunction of hyperglycemia and atherosclerosis. The incidence of heart disease is greater in patients with hyperglycemia and diabetes mellitus, due to both coronary disease and cardiomyopathy. At present, there are numerous drugs that target atherosclerosis or hyperglycemia, which can be early or late manifestations, respectively, in the natural history of type-2 diabetes mellitus. Consequently, morbidity and mortality have declined significantly in recent decades.

Key words:
Type-2 diabetes mellitus
Visceral obesity
Atherogenic dyslipidemia
Nitric oxide synthase
Adhesion molecules
El Texto completo está disponible en PDF
Bibliografía
[1.]
H. King, R.E. Aubert, W.H. Herman.
Global burden of diabetes, 1999-2025: prevalence, numerical estimates, and projections.
Diabetes Care, 21 (1998), pp. 1414-1431
[2.]
P. Zimmet, K.G. Alberti, S. Shaw.
Global and societal implications of diabetes epidemic.
Nature, 414 (2001), pp. 782-787
[3.]
M. Laakso, S. Lehto.
Epidemiology of macrovascular disease in diabetes.
Diab Rev, 5 (1997), pp. 294-315
[4.]
K. Gu, C.C. Cowie, M.I. Harris.
Diabetes and decline in heart disease mortality in US adults.
JAMA, 281 (1999), pp. 1291-1297
[5.]
R. Huxley, F. Barzi, M. Woodward.
Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies.
BMJ [accedido 21 Dic], (2006),
[6.]
A.F. Amos, D.J. McCarthy, P. Zimmet.
The rising global burden of diabetes and its complications:estimates and projections to the year 2010.
Diabet Med, 14 (1997), pp. 1-85
[7.]
M.I. Harris.
Epidemiology of Diabetes mellitus among the elderly in the United States.
Clin Geriatr Med, 6 (1990), pp. 703-719
[8.]
American Diabetes Association.
Economic consequences of diabetes mellitus in the US in 1997.
Diabetes Care, 21 (1998), pp. 296-309
[9.]
P.J. Lustman, R.E. Clouse.
Identifying novel approaches to diabetes prevention and treatment: the example of depression.
Diab Spect, 17 (2004), pp. 147-148
[10.]
K.H. Van Hoeven, S.M. Factor.
A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive-diabetic heart disease.
Circulation, 82 (1990), pp. 848-855
[11.]
R. Yarom, H. Zirkin, G. Stammler, A.G. Rose.
Human coronary microvessels in diabetes and ischaemia. Morphometric study of autopsy material.
J Pathol, 166 (1992), pp. 265-270
[12.]
The Diabetes Drafting Group.
Prevalence of small vessel and large vessel disease in diabetic patients from 14 centers. The World Health Organisation Multinational Study of Vascular Disease in Diabetics.
Diabetologia, 28 (1985), pp. 615-640
[13.]
W.B. Kannel.
Factores de riesgo de coronariopatía: actualización del estudio de Framingham.
Hosp Pract, 6 (1991), pp. 45-55
[14.]
UK Prospective Diabetes Study 6.
Complications in newly diagnosed type 2 diabetic patients and their association with different clinical and biochemical risk factors.
Diabetes Res, 13 (1990), pp. 1-11
[15.]
S.M. Haffner, S. Lehto, T. Rönnemaa, K. Pÿorala, M. Laakso.
Mortality from coronary heart disease in subjects with type 2 diabetes and in non diabetic subjects with and withour prior miocardial.
N Engl J Med, 339 (1998), pp. 229-234
[16.]
I. Zavaroni, E. Bonora, M. Pagliara, E. Dall’Aglio, L. Luchetti, G. Buonanna, et al.
Risk factors for coronary artery disease in healthy persons with hyperinsulinemia and normal glucosa tolerance.
N Eng J Med, 320 (1989), pp. 702-706
[17.]
I. Zavaroni, E. Dall’Aglio, E. Bonora, O. Alpi, M. Passeri, G.M. Reaven.
Evidence that multiple risk factors for coronary artery disease exist in persons with abnormal glucose tolerance.
Am J Med, 83 (1987), pp. 609-612
[18.]
Q.Z. Liu, W.C. Knowler, R.G. Nelson, M.F. Saad, M.A. Charles, I.M. Liebow.
Insulin treatment, endogenous insulin concentration and ECG abnormalities in diabetic Pima Indians: cross sectional and prospective analyses.
Diabetes, 41 (1992), pp. 1141-1150
[19.]
A.D. Baron.
Cardiovascular Action of Insulin in humans Implications for Insulinsensitivity and Vascular tone.
Ballieres Clinical Endocrinology and Metabolism. Insulin Resistance and Disease, pp. 961-988
[20.]
C.M. Steppan, S.T. Baile, S. Bhat, E.J. Brown, R.R. Banerjee, C.M. Wright, et al.
The hormone resistin links obesity to diabetes.
Nature, 409 (2001), pp. 307-312
[21.]
A.D. Baron, H.O. Steiberg.
Vascular actions of insulin in health and disease.
Endocrinology of the vasculature, pp. 95-108
[22.]
F. Jung, J. Haendeler, C. Goebel, A.M. Zeiher, S. Dimmeler.
Growth factor-induced phosphoinositol 3-OH kinase/Akt phosphorylation in smooth muscle cells: induction of cell proliferation and inhibition of cell death.
Cardiovasc Res, 48 (2000), pp. 1248-1257
[23.]
T. Kooistra, P.J. Bosma, H.A.M. Tons, A. Van den Berg, R. Meyer, C. Princen.
Plasminogen activator inhibitor 1: biosynthesis and mRNA level are increased by insulin in cultured human hepatocytes.
Thromb Haemost, 91 (1989), pp. 2185-2193
[24.]
R. Bergholm, J. Wexterbacka, S. Vehkavaara, A. Seppälä-Lindroos, T. Goto, H. Yki-Järvinen.
Insulin sensitivity regulates autonomic control of heart rate variation independent of body weight in normal subjects.
J Clin Endocrinol Metab, 86 (2001), pp. 1403-1409
[25.]
B.C. Berk, W.S. Weintraub, R.W. Alexander.
Elevation of C-reactive protein in «active» coronary artery disease.
Am J Cardiol, 65 (1990), pp. 168-172
[26.]
G. Iluso, L.M. Biasucci, J.R. Gallimore, R.L. Grillo, A.G. Rebuzzi, M.B. Pepys.
The prognostic value of C-reactive protein and serum amyloid a protein in severe instable angina.
N Engl J Med, 331 (1994), pp. 417-424
[27.]
L.M. Biasucci, G. Iluso, C. Colizzi, V. Rizzello.
Clinical use of Creactive protein for the prognostic stratification of patients with ischemic heart disease.
Ital Heart J, 2 (2001), pp. 164-171
[28.]
P. Libby, P.M. Ridker, A. Maseri.
Inflammation and atherosclerosis.
Circulation, 105 (2002), pp. 1135-1143
[29.]
P.M. Ridker, C.H. Hennekens, J.E. Buring, N. Rifai.
C-reactive protein and other markers of inflammation in the predicction of cardiovascular disease in women.
N Engl J Med, 342 (2000), pp. 836-843
[30.]
P.M. Ridker, N. Rifai, M.J. Stampfer, C.H. Hennekens.
Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.
Circulation, 101 (2000), pp. 1767-1772
[31.]
T.B. Harris, L. Ferucci, R.P. Tracy, M.C. Corti, S. Wacholder, W.H. Ettinger Jr, et al.
Associations of elevated interleukin-6 and C-reactive protein levels with mortality in the elderly.
Am J Med, 106 (1999), pp. 506-512
[32.]
P.M. Ridker, N. Rifai, M. Pfeffer, F. Sacks, S. Lepage.
Elevation of tumor necrosis factor alpha and increased risk of recurrent coronary events after myocardial infarction.
Circulation, 101 (2000), pp. 2149-2153
[33.]
S.J. Hwang, C.M. Ballantyne, A.R. Sharret, L.C. Smith, C.E. Davis, A.M. Gotto Jr, et al.
Circulating adhesion molecules VCAM-1, ICAM-1 and E-selectin in carotid atherosclerosis and incident coronary Heart disease cases. The Atherosclerosis Risk in Communities (ARIC) study.
Circulation, 94 (1997), pp. 4219-4225
[34.]
P.M. Ridker, J.E. Buring, N. Rifai.
Soluble P-selectin and the risk of future cardiovascular events.
Circulation, 103 (2001), pp. 491-495
[35.]
W. Koenig, M. Sund, M. Frohlich, H.G. Fischer, H. Löwel, A. Döring, et al.
C-reactive protein, a sensitive marker of inflammation, predicts future risk coronary heart disease in initially healthy middle-aged men: results from the MONICA Ausburg Cohort Study, 1984 to 1992.
Circulation, 99 (1999), pp. 237-242
[36.]
J.M. Fernandez-Real, W. Ricart.
Insulin resistance and chronic cardiovascular inflammatory syndrome.
Endocrine Rev, 24 (2003), pp. 278-301
[37.]
D.A. Siwik, D.L.F. Chang, W.S. Colucci.
Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro.
Circ Res, 86 (2000), pp. 1259
[38.]
M. Lopes-Virella, G. Virilla.
Cytokines, modified lipoproteins, and atherosclerosis in diabetes.
Diabetes, 45 (1996), pp. 40-44
[39.]
P. Barath, M.C. Fishbein, J. Cao, J. Berenson, R.H. Helfant, J.S. Forrester.
Detection and localization of TNF in human atheroma.
Am J Cardiol, 21 (1989), pp. 1241-1251
[40.]
M. Kaartinen, A. Penttila, P. Kovanen.
Mast cells in ruptura prone areas of human coronary atheromas produce and store TNF-alpha.
Circulation, 27 (1996), pp. 87-92
[41.]
J.S. Yudkin, M. Kumasi, S.E. Humphries.
Inflammation, obesity, stress and coronary heart disease:is interleukin-6 the link?.
Atherosclerosis, 148 (2000), pp. 209-214
[42.]
A. Woods, D.J. Brull, S.E. Humphries.
Genetics of inflammation and risk of coronary heart disease: the central role of interleukin 6.
Eur Heart J, 21 (2000), pp. 1574-1583
[43.]
P.M. Ridker, N. Rifai, M.J. Stampfer.
Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men.
Circulation, 101 (2000), pp. 1767-1772
[44.]
UKPDS Group.
Intensive blood glucose control with sulphonilurea or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).
Lancet, 352 (1999), pp. 837-853
[45.]
UK Prospective Diabetes Study (UKPDS) Group.
Effect of intensive blood-glucose control with metformin on complication in overweight patients with type 2 diabetes (UKPDS 34).
Lancet, 352 (1998), pp. 854-865
[46.]
Y. Ohkubo, H. Kishikawa, E. Arki, T. Miyata, S. Isami, S. Motoyoshi, et al.
Intensive insulin therapy prevents the progresión of diabetic microvascular complications in Japanese patients with noninsulin- dependent diabetes mellitus: a randomized prospective 6 year study.
Diab Res Clin Prac, 28 (1995), pp. 103-119
[47.]
N. Suskin, R.S. McKelvie, R.J. Burns, R. Latini, D. Pericak, J. Probstfield.
Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure.
Eur Heart J, 21 (2000), pp. 1368-1375
[48.]
M. Holzmann, A. Olsson, J. Johansson, M. Jensen-Urstad.
Left ventricular diastolic function is related to glucose in a middle-aged population.
J Intern Med, 251 (2002), pp. 415-420
[49.]
P. Gaede, P. Vedel, H.H. Parving, O. Pedersen.
Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 diabetes study.
[50.]
K. Malmberg.
Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group.
BMJ, 314 (1997), pp. 1512-1515
[51.]
R.A. DeFronzo.
Diabetic nephropathy: etiologic and therapeutic considerations.
Diabet Rev, 3 (1995), pp. 510-564
[52.]
R.O. Estacio, B.W. Jeffers, W.R. Hiatt, S.L. Biggerstaff, N. Gifford, R.W. Schrier.
The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin dependent diabetes and hypertension.
N Engl J Med, 338 (1998), pp. 645-652
[53.]
P. Deewania.
Hypertension and Diabetes.
Arch Intern Med, 160 (2000), pp. 1585-1594
[54.]
Diabetic Nehropathy.
ADA Recommendations.
Diabetes Care, 23 (2000), pp. S73-S76
[55.]
R.A. DeFronzo.
Diabetic nephropathy: etiologic and therapeutic considerations.
Diabetes Rev, 3 (1995), pp. 510-564
[56.]
E. Ferrannini, G. Buzzyali, R. Bonadonnea.
Insulin resistance in essential hypertension.
N Eng J Med, 317 (1987), pp. 350-357
[57.]
E. Ferrannini, A. Natali, B. Capaldo, M. Lehtovirta, S. Jacobet.
Insulin resistance hyperinsulinemia and blood pressure. Role of age and obesity.
Hypertension, 30 (1997), pp. 1144-1149
[58.]
E. Ferrannini.
Insulin resistance and blood pressure.
Insulin resistance. The metabolic syndrome X, pp. 281-308
[59.]
E. Ferranini, A. Natali, B. Capaldo, M. Lehtovirta, S. Jacob, H. Yki-Jarvinen.
Insulin resistance, hyperinsulinemia, and blood pressure: role of age and obesity. European Group for the Study of Insulin Resistance (EGIR).
Hypertension, 30 (1997), pp. 1144-1149
[60.]
L.C. Groop, M. Kankuri, C. Shalin-Jantti, A. Ekstrand, P. Nikula-Ijas, E. Widen, et al.
Association between polymorphism of the glycogen syntase gene and non insulin-dependent diabetes mellitus.
N Eng J Med, 328 (1993), pp. 10-14
[61.]
A.E. Stenbit, T.S. Tsao, J. Li, R. Burcelin, D.L. Geenen, S.M. Factor, et al.
Glut 4 heterozygous knockout mice develop muscle insulin resistance and diabetes.
Nat Med, 3 (1997), pp. 1096-1101
[62.]
O.J. Whithers, J.S. Gutiérrez, H. Towery, D.J. Burks, J.M. Ren, S. Previs, et al.
Disruption of IRS-2 causes type 2 diabetes in mice.
Nature, 391 (1998), pp. 900-904
[63.]
I. Barroso, M. Gurnell, V.E. Crowley, M. Agostini, J.W. Schwabel, M.A. Soos, et al.
Dominant negative mutations in human PPAR? associated with sever insulin resistance, diabetes mellitus and hypertension.
Nature, 402 (1999), pp. 880-883
[64.]
A. Rosengren, L. Welin, A. Tsipogianii, L. Wilhelmesn.
Impact of cardiovascular risk factors on coronary heart disease and mortality among middle aged diabetic men: a general population study.
BMJ, 299 (1989), pp. 1127-1131
[65.]
W.B. Kannel, L. McGee.
Diabetes and cardiovascular risk factors: the Framinghan Study.
Circulation, 59 (1979), pp. 8-13
[66.]
M.W. Mansfield, D. Heywood, P.J. Grant.
Circulating levels of factor VII, fibrinogen and von Willebrand factor and features of insulin resistance in non-insulin dependent diabetes mellitus.
Thromb Haemost, 75 (1996), pp. 401-406
[67.]
G. Steiner, M. Vranic.
Hyperinsulinemia and hypertrigliceridemia, a vicious cycle with atherogenic potential.
Int J Obesity, 6 (1982), pp. 117-124
[68.]
S.M. Grundy, C.N. Bairey Merz, B. Brewer, L.T. Clark, D.B. Hunninghake, R.C. Pasternak, et al.
Implications of Recent Clinical Trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines.
Circulation, 110 (2004), pp. 227-239
[69.]
J.S. Yudkin, C.D. Stehouwer, J.J. Emeis.
C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?.
Arterioscler Thromb Vasc Biol, 19 (1999), pp. 972-978
[70.]
M. Recasens, W. Ricart, J.M. Fernández-Real.
Obesidad e inflamación.
Rev Med Univ Navarra, 48 (2004), pp. 49-54
[71.]
J.H. Fuller, H. Keen, R.J. Jarrett, T. Omer, T.W. Meade, R. Chakrabarti, et al.
Haemostatic variables associated with diabetes and its complications.
BMJ, 2 (1979), pp. 964-966
[72.]
M.T. Sartori, R. Vettor, G. De Pergola, V. De Mitrio, G. Saggiorato, P. Della Mea, et al.
Role of the 4G/5G polymorphism of PAI-1 gene promoter on PAI-1 levels in obese patients.
Thromb Haemost, 86 (2001), pp. 1161-1169
[73.]
I. Juhan-Vague, M.C. Alessi, P.E. Morange.
Hypofibrinolysis and increased PAI-1 are linked to atherosclerosis via insulin resistance and obesity.
Ann Med, 32 (2000), pp. 78-84
[74.]
A. Mavri, M.C. Alessi, I. Juhan-Vague.
Hypofibrinolysis in the insulin resistance syndrome: implication in cardiovascular diseases.
J Intern Med, 255 (2004), pp. 448-456
[75.]
C. Falcon, G. Pfliegler, H. Deckmyn, J. Vermylen.
The platelet insulin receptor: detection, partial characterization, and search for a function.
Biochem Biophys Res Com, 157 (1988), pp. 1190-1196
[76.]
K. Hiramatsu, H. Nozaki, S. Arimori.
Reduction of platelet agregation induced by euglycaemic insulin clamp.
Diabetologia, 30 (1987), pp. 310-313
[77.]
J. Westerbacka, H. Yki-Järvinen, A. Turpeinen, A. Rissanen, S. Vehkavaara, M. Syrjälä, et al.
Inhibition of platelet-collagen-gen interaction. An in vivo action of insulin abolished by insulin resistance in obesity.
Arterioscler Thromb Vasc Biol, 22 (2002), pp. 167-172
[78.]
M. Nakata, T. Yada, N. Soejima, I. Maruyama.
Leptin promotes aggregation of human platelets via the long form of its receptor.
Diabetes, 48 (1999), pp. 426-429
[79.]
S. Konstantinides, K. Schäfer, S. Koschnick, D.J. Losutoff.
Leptindependent platelet aggregation and arterial trombosis suggests a mechanism for atherotrombotic disease in obesity.
J Clin Invest, 108 (2001), pp. 1533-1540
[80.]
M.g. Conlan, A.R. Folsom, A. Finch, C.E. Davis, P. Sorlie, G. Marcucci, et al.
Associations of factor VIII, and von Willebrand factor with age, race, sex, and risk factors for atherosclerosis. The Atherosclerosis Risk in Communities (ARIC) Study.
Thromb Haemost, 70 (1993), pp. 380-385
[81.]
I. Juhan-Vague, S.G. Thompson, J. Jespersen.
Involvement of the hemostatic system in the insulin resistance syndrome: a study of 1500 patients with angina pectoris. The ECAT angina pectoris group.
Arterioscler Thromb, 13 (1993), pp. 1865-1873
[82.]
J.B. Meigs, M.A. Mittleman, D.M. Nathan, G.H. Tofler, D.E. Singer, P.M. Murphy-Sheehy, et al.
Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study.
JAMA, 283 (2000), pp. 221-228
[83.]
M.R. Hayden, S.C. Tyagi.
Is type 2 diabetes mellitus a vascular disease (atheroscleopathy) with hyperglycemia a late manifestation? The role of NOS, NO and redox stress.
Cardiovasc Diabetol, 2 (2003), pp. 2
[84.]
D.T. Nash.
Insulin resistance, ADMA levels, and cardiovascular disease.
JAMA, 287 (2002), pp. 1451-1452
[85.]
H. Duplain, R. Burcelin, C. Sartori, S. Cook, M. Egli, M. Lepori, et al.
Insulin resistance, hyperlipidemia, and hypertension in mice lacking endotehlial nitric oxide synthase.
Circulation, 104 (2001), pp. 342-345
[86.]
Y. Miyamoto, Y. Saito, N. Kajiyama, M. Yoshimura, Y. Shimasaki, M. Nakayama.
Endotelial nitric oxide synthase gene is positevely associated with essential hypertension.
Hypertension, 32 (1998), pp. 3-8
[87.]
A.D. Hingorani, C.F. Liang, J. Fatibene, A.S. Lyon Monteih, A. Parsons, S. Haydok, et al.
A common variant of the endothelial nitric synthase (Glu 298 ? Asp) is a mayor risk factor for coronary artery disease in the UK.
Circulation, 100 (1999), pp. 1515-1520
[88.]
Y. Huo, K. Ley.
Adhesion molecules and atherogenesis.
Acta Physiol Scand, 173 (2001), pp. 35-43
[89.]
J.M. Harlan, D.Y. Liu.
Adhesion: it's role in inflammatory disease.
WH Freeman, (1992),
[90.]
R.R. Johnson-Tidey, J.L. McGregor, P.R. Taylor, R.N. Poston.
Increase in the adhesion molecule P-selectin in endothelium overlying aetherosclerotic plaques:coexpression with intercellular adhesion molecule-1.
Am J Pathol, 144 (1994), pp. 952-961
[91.]
M.J. Davies, J.L. Gordon, A.J.H. Gearing, R. Pigott, N. Woolf, D Katz, et al.
The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis.
J Pathol, 171 (1993), pp. 223-229
[92.]
K. Iiyama, L. Hajra, M. Iiyama.
Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation.
Circ Res, 85 (1999), pp. 199-207
[93.]
T.A. Springer.
Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm.
Cell, 76 (1994), pp. 301-314
[94.]
D.R. Manka, P. Wiegman, S. Dinb, J.M. Sandersb, S.A. Greencet.
Arterial injury increases expression of inflammatory adhesion molecules in the carotid arteries of apolipoprotein E-deficient mice.
J Vas Res, 36 (1999), pp. 372-378
[95.]
K.D. O’Brien, T.O. McDonald, A. Chait, J.M. Harlan, D. Fishbein, J. McCarty, et al.
Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis.
J Clin Invest, 92 (1993), pp. 945-951
[96.]
G. Brevetti, M. De Caterina, V.D. Martone, B. Ungaro, F. Corrado, A. Silvestro, et al.
Exercise increases soluble adhesion molecules ICAM-a and VCAM-1 in patients with intermittent claudication.
Clin Hemorheol Microcirc, 24 (2001), pp. 193-199
[97.]
A. Hackman, Y. Abe, W. Insull, H. Pownall, L. Smith, K. Dunn, et al.
Levels of soluble cell adhesion molecules in patients with dyslipidemia.
Circulation, 93 (1996), pp. 1334-1338
[98.]
J.JF. Belch, J.W. Shaw, G. Kirk, M. McLaren, R. Robb, C. Maple, et al.
The white blood cell adhesion molecule E-selectin predicts restenosis in patients with intermittent claudication undergoing percutaneous transliminal angioplasty.
Circulation, 95 (1997), pp. 2027-2031
[99.]
N.T. Mulvihill, J.B. Foley, R.T. Murphy.
Enhanced endothelial activation in diabetic patients with unstable angina and non-Q-wave myocardial infarction.
Diabet Med, 18 (2001), pp. 979-983
[100.]
W.B. Kannel, M. Hjortland, W.P. Castelli.
Role of diabetes in congestive heart failure: the Framingham study.
Am J Cardiol, 34 (1974), pp. 29-34
[101.]
B. Andersson, F. Waagstein.
Spectrum and outcome of congestive heart failure in a hospitalised population.
Am Heart J, 126 (1993), pp. 632-640
[102.]
D. Bell.
Diabetic cardiomiopathy.
Diabetes Care, 26 (2003), pp. 2949-2951
[103.]
R.B. Devereux, M.J. Roman, M. Paranicas, M.J. O’Grady, E.T. Lee, T.K. Welty, et al.
Impact of diabetes on cardiac structure and function: the Strong Heart Study.
Circulation, 101 (2000), pp. 2271-2276
[104.]
L. Vaur, P. Gueret, M. Lievre, S. Chabard, P. Parre.
Development of congestive heart failure in type 2 diabetic patients with microalbuminuria or proteinuria.
Diabetes Care, 26 (2003), pp. 855-860
[105.]
L. Amato, G. Paolisso, F. Cacciatore, N. Ferrara, P. Ferrara, S. Canonico, et al.
On behalf of the observatorio Geriatrico Regione Campania Group. Congestive Heart Failure predicts the development of non-insulin dependent diabetes mellitus in the elderly.
Diabetes Metab, 23 (1997), pp. 213-218
[106.]
J.L. Cosme García, A. Urrutia, B. González, J. Herreros, S. Altimir, R. Coll, et al.
Significado pronóstico de la diabetes mellitus en una población con insuficiencia cardiaca: mortalidad e ingreso por insuficiencia cardiaca a 1 año.
Med Clin (Barc), 25 (2005), pp. 182-183
[107.]
P. De Groote, N. Lamblin, F. Mouquet, D. Plichon, E. McFadden, E. Van Belle, et al.
Impact of diabetes mellitus on long-term survival in patients with congestive heart failure.
Eur Heart J, 25 (2004), pp. 656-662
[108.]
D.L. Dries, N.K. Sweitzer, M.H. Drazner, B.J. Gersch.
Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction.
J Am Coll Cardiol, 38 (2001), pp. 421-428
[109.]
M. Domanski, H. Krause-Steinrauf, P. Deedwania, D. Follman, J.K. Ghali, E. Gilbert, et al.
BEST investigators. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST trial.
J Am Coll Cardiol, 42 (2003), pp. 914-922
[110.]
C. Bauters, N. Lamblin, E.P. McFadden, E. Van Bell, A. Millaire, P. DeGroote.
Influence of diabetes mellitus on heart failure risk and outcome.
Cardiovasc Diabetol, 2 (2003), pp. 1-16
[111.]
M. Bartnik, K. Malmberg, L. Ryden.
Managing heart disease. Diabetes and the heart: compromised myocardial function: a common challenge.
Eur Heart J Suppl, 5 (2003), pp. 33-41
[112.]
C. Szabo.
PPAR as a drug target for the therapy of diabetic cardiovascular dysfunction.
Drugs News Perspect, 15 (2002), pp. 197-205
[113.]
N. Hardin.
The myocardial and vascular pathology of diabetic cardiomyopathy.
Coronary Arter Dis, 7 (1996), pp. 99-108
[114.]
P. Brunetti, G. Perriello.
Hyperglycemia as cardiovascular risk in type 2 diabetes.
Cardiovascular risk in type 2 diabetes mellitus, pp. 22-27
[115.]
I.A. Veresiu.
Assesment of peripheral vascular disease.
Cardiovascular risk in type 2 diabetes mellitus, pp. 227-239
[116.]
Palumbo PJ, Melton LJ. Peripheral vascular disease in diabetes. En: diabetes care in America. 2nd ed. National Institute of Health, National Institute of Diabetes and Digestive and Kidney Diseases. NIH Publication. 1995:1468:401-8.
[117.]
S. Zhou, L.C. Dickinson, Li. Yang, E.A. Decker.
Identification of hydrazine in commercial preparations of carnosine and its influence on carnosine's antioxidative properties.
Analyt Biochem, 261 (1998), pp. 79-86
[118.]
F.M. Gribble, F.M. Ashcroft.
Differential sensitivity of beta-cell and extrapancreatic Katp channels to glicacide.
Diabetologia, 42 (1999), pp. 845-848
[119.]
Diabetes Prevention Program Research Group.
Effects of withdrawal from metformin on the development of diabetes in the diabetes prevention program.
Diabetes Care, 26 (2003), pp. 977-980
[120.]
P. Sarafidis, A. Larasidis, P. Nilsson.
Ambulatory blood pressure reduction after rosiglitazone treatment in patients with type 2 diabetes and hypertension correlates with insulin sensitivity increase.
J Hypertens, 22 (2004), pp. 1769-1777
[121.]
J.R. González Juanetey, L. Grigorian Shamagian.
Beneficios potenciales de las glitazonas sobre la enfermedad cardiovascular en la diabetes. Situación actual y perspectivas de futuro.
Adv Diabetol, 21 (2005), pp. 108-117
[122.]
D. Choi, S.K. Kim, S.H. Choi, Y.G. Ko, C.W. Ahn, Y. Jang, et al.
Preventive effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes.
Diabetes Care, 27 (2004), pp. 2654-2660
[123.]
J.A. Dormandy, B. Charbonnel, D.J.A. Eckland, M. Massi-Benedetti, I.K. Moules, A.M. Skene, et al.
Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial.
Lancet, 366 (2005), pp. 1279-1289
[124.]
Spanheimer R, Tan M, Yates J, on behalf of the PROactive Investigators. Effects of Long-Term Pioglitazone Therapy on Serum Lipid Profiles in High-Risk Type 2 Diabetes Patients: Result From the PROactive Study. Presentado en el World Congress of Cardiology. Barcelona, España, 2-6 Septiembre, 2006.
[125.]
Heart outcomes prevention evaluation (HOPE) study investigators.
Effect of angiotensin converting enzyme inhibitor Ramipril on cardiovascular events in high-risk patients.
N Eng J Med, 342 (2000), pp. 145-153
[126.]
Heart outcomes Prevention Evaluation (HOPE) Study Investigators.
Effects of Ramipril on cardiovascular and microvascular outcomes in people with Diabetes Mellitus: Results of the HOPE and the MICROHOPE substudy.
Lancet, 355 (2000), pp. 253-259
[127.]
M. Ravid, D. Brosch, Z. Levi, Y. Bar-Dayan, D. Ravid, R. Rachmani.
Use of enalapril to attenuate decline in renal function in nor-motensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized controlled trial.
Ann Intern Med, 128 (1998), pp. 982-988
[128.]
T. Sano, N. Hotter, T. Kawamura, H. Matsume, S. Chaya, H. Sasaki, et al.
Effects of long-term enalapril treatment on persistent microalbuminuria in normotensive type 2 diabetic patients: results of a 4 year prospective, randomized study.
[129.]
J. Ahmad, M.A. Siddiqui, M. Ahmad.
Effective postponement of diabetic nephropaty with enalapril in normotensive type 2 diabetic patients with microalbumniuria.
Diabetes Care, 20 (1997), pp. 1576-1581
[130.]
DREAM trial investigators.
Effect of Ramipril on the Incidence of Diabetes.
N Engl J Med, 355 (2006), pp. 1-12
[131.]
M. Burnier, H.R. Brunner.
Angiotensin II receptor antagonists.
Lancet, 355 (2000), pp. 637-645
[132.]
B.M. Brenner, M.L. Cooper, D. Zeeuw, W.F. Keane, W.E. Mitch, H.H. Parving, For the RENAAL Study Investigators: effects of losartan on renal and cardiovascular outcomes in patients with Type 2 diabetes nephropathy, et al.
N Engl J Med, 342 (2001), pp. 861-869
[133.]
H.A. Pershadsingh.
Treating the metabolic syndrome using angiotensin receptor antagonists that selectively modulate peroxisome proliferator-activated receptor γ.
Int J Biochem Cell Biol, 38 (2006), pp. 766-781
[134.]
M. Fujimoto, H. Masuzaki, T. Tanaka, S. Yasue, T. Tomita, K. Okazawa, et al.
An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT 4 protein expression in 3T3-L1 adipocitos.
FEBS Letters, 576 (2004), pp. 492-497
[135.]
M. Clemenz, J. Frank, M. Schupp, M. Goebel, T. Unger, U. Kintscher.
The PPAR-γ activating ARB irbesartan stimulates expression of the insulin-signaling protein CAP and enhances insulin: induced glucose uptake.
American Heart Association Scientific Sessions, (2004),
[136.]
C. Vitale, G. Mercuro, C. Castiglioni, A. Cornoldi, A. Tulli, M. Fini, et al.
Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome.
Cardiovasc Diabetol, 4 (2005), pp. 6-8
[137.]
G. Derosa, A.F. Cicero, G. Bertone, M.N. Piccini, E. Fogari, L. Ciccarelli, et al.
Comparison of the effects of telmisartan and nifedipine gastrointestinal therapeutic system on blood pressure control, glucose metabolism, and the lipid profile in patients with type 2 diabetes mellitus and mild hypertension: a 12-month, randomized, double blind study.
Clin Therap, 26 (2004), pp. 1228-1236
[138.]
G. Derosa, P.D. Ragonesi, A. Mugellini, L. Ciccarelli, R. Fogari.
Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism, and the lipid profile in hypertensive, type 2 diabetic patients: A 12-month, randomized, double blind placebo study.
Hypertension Res, 27 (2004), pp. 264-347
[139.]
Y. Miura, N. Yamamoto, S. Tsunekawa, S. Taguchi, Y. Eguchi, N. Ozaki, et al.
Replacement of valsartan and candesartan by telmisartan in hypertensive patients with type 2 diabetes: metabolic and antiatherogenic consequences.
Diabetes Care, 28 (2005), pp. 757-758
[140.]
R. Carmena, J.F. Ascaso.
Dyslipidemia and cardiovascular risk in diabetes.
Cardiovascular risk in type 2 diabetes mellitus, pp. 22-27
[141.]
M. Laakso, S. Lehto.
Epidemiology of macrovascular disease in diabetes.
Diabetes Rev, 5 (1997), pp. 294-315
[142.]
L.F. Pallardo Sánchez, L. Herranz de la Morena.
Prevención de la diabetes mellitus tipo 2 y de sus complicaciones microangiopáticas.
Cardiovas Risk Factors, 12 (2003), pp. 112-126

Full English text available at: www.revespcardiol.org

Copyright © 2007. Sociedad Española de Cardiología
Idiomas
Revista Española de Cardiología

Suscríbase a la newsletter

Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?