ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 6. Núm. B.
Páginas 31B-47B (Abril 2006)

Insuficiencia cardiaca postinfarto. papel del bloqueo aldosterónico: eplerenona
Mecanismo de acción de la eplerenona

Mechanism of Action of Eplerenone

Lucía NúñezRicardo CaballeroRicardo GómezMiguel VaqueroEva DelpónJuan Tamargo¿

Opciones

Hace más de 50 años que conocemos que, en los tejidos epiteliales, la aldosterona produce retención de Na+ y agua, y pérdida de K+ y Mg2+. Sin embargo, la aldosterona ejerce también importantes acciones extrarrenales, mediadas por la activación de los receptores mineralocorticoideos presentes en corazón, cerebro y vasos. Recientemente se ha demostrado, tanto de manera experimental como en la práctica clínica, que la aldosterona es un factor de riesgo independiente para el desarrollo de enfermedades cardiovasculares. De hecho, unas concentraciones elevadas de aldosterona se relacionan con un efecto deletéreo en el sistema cardiovascular, que contribuye al desarrollo de disfunción endotelial, fibrosis, hipertrofia e inflamación, insuficiencia cardiaca, activación simpática, ictus y disfunción renal. Además, se ha demostrado que el tratamiento con antagonistas de los receptores mineralocorticoideos reduce el daño progresivo que la aldosterona produce en los órganos diana de pacientes con hipertensión o insuficiencia cardiaca. La eplerenona es un nuevo antagonista específico de los receptores mineralocorticoideos que ha sido aprobado para el tratamiento de pacientes con disfunción sistólica ventricular izquierda y evidencia clínica de insuficiencia cardiaca tras infarto de miocardio. Comparada con la espironolactona, la eplerenona presenta una mayor selectividad por los receptores mineralocorticoideos que por otros receptores esteroideos y mejora las propiedades farmacocinéticas de aquélla. Esta revisión analiza, en primer lugar, la síntesis, la liberación y el mecanismo de acción de la aldosterona y, posteriormente, el mecanismo de acción, las propiedades farmacocinéticas y farmacodinámicas y la tolerabilidad de la eplerenona.

Palabras clave

Eplerenona
Mecanismo de acción
Aldosterona
Farmacología
Este artículo solo puede leerse en pdf
Bibliografía
[1.]
P. Timmermans, P. Wong, A. Chiu, W.F. Herblin, P. Benfield, D.J. Carini, et al.
Angiotensin II receptors and angiotensin II receptor antagonists.
Pharmacol Rev, (1993), 45 pp. 205-251
[2.]
E. Delpón, R. Caballero, R. Gómez, L. Núñez, J. Tamargo.
Angiotensin II, angiotensin II antagonists and spironolactone and their modulation of cardiac repolarization.
Trends Pharmacol Sci, (2005), 26 pp. 155-161
[3.]
D.A. Sica.
Aldosterone receptor blockade: a therapy resurrected.
Heart Dis, (2003), 5 pp. 85-88
[4.]
T.D. Moore, J.J. Nawarskas, J.R. Anderson.
Eplerenone: a selective aldosterone receptor antagonist for hypertension and heart failure.
[5.]
A.D. Struthers, T.M. MacDonald.
Review of aldosterone- and angiotensin II-induced target organ damage and prevention.
Cardiovasc Res, (2004), 61 pp. 663-670
[6.]
J.W. Conn, R.F. Knopf, R.M. Nesbit.
Clinical characteristics of primary aldosteronism from an analysis of 145 cases.
Am J Surg, (1964), 107 pp. 159-172
[7.]
R. Takeda, T. Matsubara, I. Miyamori, H. Hatakeyama, T. Morise.
Vascular complications in patients with aldosterone producing adenoma in Japan: comparative study with essential hypertension. The Research Committee of Disorders of Adrenal Hormones in Japan.
J Endocrinol Invest, (1995), 18 pp. 370-373
[8.]
R.E. Booth, J.P. Johnson, J.D. Stockand.
Aldosterone.
Adv Physiol Educ, (2002), 26 pp. 8-20
[9.]
G.H. Williams.
Aldosterone biosynthesis, regulation and classical mechanism of action.
Heart Fail Rev, (2005), 10 pp. 7-13
[10.]
D.B. Goodman, J.E. Allen, H. Rasmussen.
On the mechanism of action of aldosterone.
Proc Natl Acad Sci USA, (1969), 64 pp. 330-337
[11.]
V. Vallon, D.Y. Huang, F. Grahammer, A.W. Wyatt, H. Osswald, P. Wulff, et al.
SGK1 as a determinant of kidney function and salt intake in response to mineralocorticoid excess.
Am J Physiol Regul Integr Comp Physiol, (2005), 289 pp. R395-R401
[12.]
M. Zecevic, D. Heitzmann, S.M. Camargo, F. Verrey.
SGK1 increases Na,K-ATP cell-surface expression and function in Xenopus laevis oocytes.
Pflugers Arch, (2004), 448 pp. 29-31
[13.]
J.W. Funder.
The nongenomic actions of aldosterone.
Endocr Rev, (2005), 26 pp. 313-321
[14.]
R. Rocha, C.T. Stier Jr.
Pathophysiological effects of aldosterone in cardiovascular tissues.
Trends Endocrinol Metab, (2001), 12 pp. 308-314
[15.]
B. Boldyreff, M. Wehling.
Rapid aldosterone actions: from the membrane to signaling cascades to gene transcription and physiological effects.
J Steroid Biochem Mol Biol, (2003), 85 pp. 375-381
[16.]
B. Boldyreff, M. Wehling.
Aldosterone: refreshing a slow hormone by swift action.
News Physiol Sci, (2004), 19 pp. 97-100
[17.]
B. Pitt, F. Zannad, W.J. Remme, R. Cody, A. Castaigne, A. Pérez, et al.
The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators.
N Engl J Med, (1999), 341 pp. 709-717
[18.]
B. Pitt, W. Remme, F. Zannad, J. Neaton, F. Martinez, B. Roniker, et al.
Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction.
N Engl J Med, (2003), 348 pp. 1309-1321
[19.]
R.S. McKelvie, S. Yusuf, D. Pericak, A. Avezum, R.J. Burns, J. Probstfield, et al.
Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators.
Circulation, (1999), 100 pp. 1056-1064
[20.]
S.M. Garthwaite, E.G. McMahon.
The evolution of aldosterone antagonists.
Mol Cell Endocrinol, (2004), 217 pp. 27-31
[21.]
M.H. Weinberger, W.B. White, L.M. Ruilope, T.M. MacDonald, R.C. Davidson, B. Roniker, et al.
Effects of eplerenone versus losartan in patients with low-renin hypertension.
Am Heart J, (2005), 150 pp. 426-433
[22.]
M. de Gasparo, U. Joss, H.P. Ramjoue, S.E. Whitebread, H. Haenni, L. Schenkel, et al.
Three new epoxy-spirolactone derivatives: characterization in vivo and in vitro.
J Pharmacol Exp Ther, (1987), 240 pp. 650-656
[23.]
R. Alzamora, E.T. Marusic, M. González, L. Michea.
Nongenomic effect of aldosterone on Na+, K+-adenosine triphosphatase in arterial vessels.
Endocrinology, (2003), 144 pp. 1266-1272
[24.]
G.E. Callera, R.M. Touyz, R.C. Tostes, A. Yogi, Y. He, S. Malkinson, et al.
Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src.
Hypertension, (2005), 45 pp. 773-779
[25.]
L. Michea, A.M. Delpiano, C. Hitschfeld, L. Lobos, S. Lavandero, E.T. Marusic.
Eplerenone blocks nongenomic effects of aldosterone on the Na+/H+ exchanger, intracellular Ca2+ levels, and vasoconstriction in mesenteric resistance vessels.
Endocrinology, (2005), 146 pp. 971-972
[26.]
D.G. Levy, R. Rocha, J.W. Funder.
Distinguishing the antihypertensive and electrolyte effects of eplerenone.
J Clin Endocrinol Metab, (2004), 89 pp. 2736-2740
[27.]
R. Rocha, C.T. Stier Jr, I. Kifor, M.R. Ochoa-Maya, H.G. Rennke, G.H. Williams, et al.
Aldosterone: a mediator of myocardial necrosis and renal arteriopathy.
Endocrinology, (2000), 141 pp. 3871-3878
[28.]
M.R. Ward, P. Kanellakis, D. Ramsey, J. Funder, A. Bobik.
Eplerenone suppresses constrictive remodeling and collagen accumulation after angioplasty in porcine coronary arteries.
Circulation, (2001), 104 pp. 467-472
[29.]
C.T. Stier Jr.
Eplerenone: a selective aldosterone blocker.
Cardiovasc Drug Rev, (2003), 21 pp. 169-184
[30.]
W.B. White, A.A. Carr, S. Krause, R. Jordan, B. Roniker, O. Wille.
Assessment of the novel selective aldosterone blocker eplerenone using ambulatory and clinical blood pressure in patients with systemic hypertension.
Am J Cardiol, (2003), 92 pp. 38-42
[31.]
W.B. White, D. Duprez, R. St Hillaire, S. Krause, B. Roniker, J. Kuse- Hamilton, et al.
Effects of the selective aldosterone blocker eplerenone versus the calcium antagonist amlodipine in systolic hypertension.
Hypertension, (2003), 41 pp. 1021-1026
[32.]
N.K. Hollenberg, G.H. Williams, R. Anderson, K.S. Akhras, R.M. Bittman, S.L. Krause.
Symptoms and the distress they cause: comparison of an aldosterone antagonist and a calcium channel blocking agent in patients with systolic hypertension.
Arch Intern Med, (2003), 163 pp. 1543-1548
[33.]
G.H. Williams, E. Burgess, R.E. Kolloch, L.M. Ruilope, J. Niegowska, M.S. Kipnes.
Efficacy of eplerenone versus enalapril as monotherapy in systemic hypertension.
Am J Cardiol, (2004), 93 pp. 990-996
[34.]
J.M. Flack, S. Oparil, J.H. Pratt, B. Roniker, S. Garthwaite, J.H. Kleiman, et al.
Efficacy and tolerability of eplerenone and losartan in hypertensive black and white patients.
J Am Coll Cardiol, (2003), 41 pp. 1148-1155
[35.]
M.H. Weinberger, B. Roniker, S.L. Krause, R.J. Weiss.
Eplerenone, a selective aldosterone blocker, in mild-to-moderate hypertension.
Am J Hypertens, (2002), 15 pp. 709-716
[36.]
H. Krum, H. Nolly, D. Workman, W. He, B. Roniker, S. Krause, et al.
Efficacy of eplerenone added to renin-angiotensin blockade in hypertensive patients.
Hypertension, (2002), 40 pp. 117-123
[37.]
W. Van Mieghem, V. Von Behren, I. Balazovjech, B. Roniker, C. Lademacher, W. He, et al.
Eplerenone is safe and effective as add-on therapy in hypertensive patients uncontrolled with calcium channel blockers or beta blockers [abstract no. P1163].
Eur Heart J, (2002), 23 pp. 211
[38.]
B. Pitt, N. Reichek, R. Willenbrock, F. Zannad, R.A. Phillips, B. Roniker, et al.
Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study.
Circulation, (2003), 108 pp. 1831-1838
[39.]
A.E. Rudolph, R. Rocha, E.G. McMahon.
Aldosterone target organ protection by eplerenone.
Mol Cell Endocrinol, (2004), 217 pp. 229-238
[40.]
C.G. Brilla, H. Rupp, R. Funck, B. Maisch.
The renin-angiotensin-aldosterone system and myocardial collagen matrix remodelling in congestive heart failure.
Eur Heart J, (1995), 16 pp. 107-109
[41.]
Y. Sun, F.J. Ramires, K.T. Weber.
Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion.
Cardiovasc Res, (1997), 35 pp. 138-147
[42.]
F.J. Ramires, Y. Sun, K.T. Weber.
Myocardial fibrosis associated with aldosterone or angiotensin II administration: attenuation by calcium channel blockade.
J Mol Cell Cardiol, (1998), 30 pp. 475-483
[43.]
N.J. Brown, K.S. Kim, Y.Q. Chen, L.S. Blevins, J.H. Nadeau, S.G. Meranze, et al.
Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production.
J Clin Endocrinol Metab, (2000), 85 pp. 336-344
[44.]
A.U. Klingbeil, M. Schneider, P. Martus, F.H. Messerli, R.E. Schmieder.
A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension.
Am J Med, (2003), 115 pp. 41-46
[45.]
K.L. Davis, J.M. Nappi.
The cardiovascular effects of eplerenone, a selective aldosterone-receptor antagonist.
Clin Ther, (2003), 25 pp. 2647-2668
[46.]
W. Qin, A.E. Rudolph, B.R. Bond, R. Rocha, E.A. Blomme, J.J. Goellner, et al.
Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure.
[47.]
D.A. Duprez, M.L. De Buyzere, E.R. Rietzschel, Y. Taes, D.L. Clement, D. Morgan, et al.
Inverse relationship between aldosterone and large artery compliance in chronically treated heart failure patients.
Eur Heart J, (1998), 19 pp. 1371-1376
[48.]
M. Satoh, M. Nakamura, H. Saitoh, H. Satoh, T. Akutsa, J. Iwasaka, et al.
Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart.
Clin Sci (Lond), (2002), 102 pp. 381-386
[49.]
D. Fraccarollo, P. Galuppo, S. Hildemann, M. Christ, G. Ertl, J. Bauersachs.
Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction.
J Am Coll Cardiol, (2003), 42 pp. 1666-1673
[50.]
M.I. Wahed, K. Watanabe, M. Ma, K. Yamaguchi, T. Takahashi, H. Tachikawa, et al.
Effects of eplerenone, a selective aldosterone blocker, on the progression of left ventricular dysfunction and remodeling in rats with dilated cardiomyopathy.
Pharmacology, (2005), 73 pp. 81-88
[51.]
F. Zannad, A. Radauceanu.
Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on heart failure.
Heart Fail Rev, (2005), 10 pp. 71-78
[52.]
U. Ikeda, T. Kanbe, I. Nakayama, Y. Kawahara, M. Yokoyama, K. Shimada.
Aldosterone inhibits nitric oxide synthesis in rat vascular smooth muscle cells induced by interleukin-1 beta.
Eur J Pharmacol, (1995), 290 pp. 69-73
[53.]
C.A. Farquharson, A.D. Struthers.
Aldosterone induces acute endothelial dysfunction in vivo in humans: evidence for an aldosterone-induced vasculopathy.
Clin Sci (Lond), (2002), 103 pp. 425-431
[54.]
J. Blacher, G. Amah, X. Girerd, A. Kheder, H. Ben Mais, G.M. London, et al.
Association between increased plasma levels of aldosterone and decreased systemic arterial compliance in subjects with essential hypertension.
Am J Hypertens, (1997), 10 pp. 1326-1334
[55.]
E. Rietzschel, D.A. Duprez, M.L. De Buyzere, D.L. Clement.
Inverse relation between aldosterone and venous capacitance in chronically treated congestive heart failure.
Am J Cardiol, (2000), 85 pp. 977-980
[56.]
C.A. Farquharson, A.D. Struthers.
Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure.
Circulation, (2000), 101 pp. 594-597
[57.]
S. Keidar, T. Hayek, M. Kaplan, E. Pavlotzky, S. Hamoud, R. Coleman, et al.
Effect of eplerenone, a selective aldosterone blocker, on blood pressure, serum and macrophage oxidative stress, and atherosclerosis in apolipoprotein E-deficient mice.
J Cardiovasc Pharmacol, (2003), 41 pp. 955-963
[58.]
A. Schafer, D. Fraccarollo, S.K. Hildemann, P. Tas, G. Ertl, J. Bauersachs.
Addition of the selective aldosterone receptor antagonist eplerenone to ACE inhibition in heart failure: effect on endothelial dysfunction.
Cardiovasc Res, (2003), 58 pp. 655-662
[59.]
T. Quaschning, F. Ruschitzka, S. Shaw, T.F. Luscher.
Aldosterone receptor antagonism normalizes vascular function in liquorice-induced hypertension.
Hypertension, (2001), 37 pp. 801-805
[60.]
D. Sanz-Rosa, M.P. Oubina, E. Cediel, N.L. Heras, P. Aragoncillo, G. Balfagón, et al.
Eplerenone reduces oxidative stress and enhances eNOS in SHR: vascular functional and structural consequences.
Antioxid Redox Signal, (2005), 7 pp. 1294-1301
[61.]
N. Kobayashi, K. Hara, A. Tojo, M.L. Onozato, T. Honda, K. Yoshida, et al.
Eplerenone shows renoprotective effect by reducing LOX-1-mediated adhesion molecule, PKCepsilon-MAPK-p90RSK, and Rho-kinase pathway.
Hypertension, (2005), 45 pp. 538-544
[62.]
S. Rajagopalan, D. Duquaine, S. King, B. Pitt, P. Patel.
Mineralocorticoid receptor antagonism in experimental atherosclerosis.
Circulation, (2002), 105 pp. 2212-2216
[63.]
D.H. Endemann, R.M. Touyz, M. Iglarz, C. Savoia, E.L. Schiffrin.
Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats.
Hypertension, (2004), 43 pp. 1252-1257
[64.]
J.A. Delyani, R. Rocha, C.S. Cook, D.S. Tolbert, S. Levin, B. Roniker, et al.
Eplerenone: a selective aldosterone receptor antagonist (SARA).
Cardiovasc Drug Rev, (2001), 19 pp. 185-200
[65.]
G. Suzuki, H. Morita, T. Mishima, V.G. Sharov, A. Todor, E.J. Tanhehco, et al.
Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure.
Circulation, (2002), 106 pp. 2967-2972
[66.]
J. Bauersachs, M. Heck, D. Fraccarollo, S.K. Hildemann, G. Ertl, M. Wehling, et al.
Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction. Role of vascular superoxide anion formation and endothelial nitric oxide synthase expression.
J Am Coll Cardiol, (2002), 39 pp. 351-358
[67.]
J. Le, A.E. Rudolph, G. Moe, R. Rocha, F. Dawood, W.-H. Wen, et al.
Treatment with eplerenone, an aldosterone antagonist, improved ventricular remodeling and function post myocardial infarction.
J Am Coll Cardiol, (2003), 41 pp. 1135-1188
[68.]
R.J. MacFayden, C.S. Barr, A.D. Struthers.
Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability an reduces early morning rise in heart rate in heart failure patients.
Cardiovasc Res, (1997), 35 pp. 30-34
[69.]
J. Francis, R.M. Weiss, S.G. Wei, A.K. Johnson, T.G. Beltz, K. Zimmerman, et al.
Central mineralocorticoid receptor blockade improves volume regulation and reduces sympathetic drive in heart failure.
Am J Physiol Heart Circ Physiol, (2001), 281 pp. H2241-H2251
[70.]
R. Caballero, I. Moreno, T. González, C. Arias, C. Valenzuela, E. Delpón, et al.
Spironolactone and its main metabolite, canrenoic acid, block human ether-a-go-go-related gene channels.
Circulation, (2003), 107 pp. 889-895
[71.]
R. Gómez, L. Núñez, R. Caballero, M. Vaquero, J. Tamargo, E. Delpón.
Spironolactone and its main metabolite canrenoic acid block hKv1.5, Kv4.3 and Kv7.1 + minK channels.
Br J Pharmacol, (2005), 146 pp. 146-161
[72.]
E. Coraboeuf, E. Deroubaix.
Effect of a spironolactone derivative, sodium canrenoate, on mechanical and electrical activities of isolated rat myocardium.
J Pharmacol Exp Ther, (1974), 191 pp. 128-138
[73.]
K.M. Yee, S.D. Pringle, A.D. Struthers.
Circadian variation in the effects of aldosterone blockade on heart rate variability and QT dispersion in congestive heart failure.
J Am Coll Cardiol, (2001), 37 pp. 1800-1807
[74.]
Y. Takeda.
Pleiotropic actions of aldosterone and the effects of eplerenone, a selective mineralocorticoid receptor antagonist.
Hypertens Res, (2004), 27 pp. 781-789
[75.]
E.R. Blasi, R. Rocha, A.E. Rudolph, E.A. Blomme, M.L. Polly, E.G. Mc-Mahon.
Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats.
Kidney Int, (2003), 63 pp. 1791-1800
[76.]
R. Rocha, A.E. Rudolph, G.E. Frierdich, D.A. Nachowiak, B.K. Kekec, E.A. Blomme, et al.
Aldosterone induces a vascular inflammatory phenotype in the rat heart.
Am J Physiol Heart Circ Physiol, (2002), 283 pp. H1802-H1810
[77.]
Y. Matsui, N. Jia, H. Okamoto, S. Kon, H. Onozuka, M. Akino, et al.
Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy.
Hypertension, (2004), 43 pp. 1195-1201
[78.]
R. Rocha, C.L. Martin-Berger, P. Yang, R. Scherrer, J. Delyani, E. McMahon.
Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart.
Endocrinology, (2002), 143 pp. 4828-4836
[79.]
M. Young, J.W. Funder.
Eplerenone, but not steroid withdrawal, reverses cardiac fibrosis in deoxycorticosterone/salt-treated rats.
Endocrinology, (2004), 145 pp. 3153-3157
[80.]
J.M. Ketelslebergs, F. Zannad, E. Schiffrin, T.C. Chu, S. Garthwaite, R. Patni, et al.
The effect of eplerenone on the cytokine osteopontin in post-AMI heart failure: an EPHESUS substudy.
Eur Heart J, (2004), 25 pp. P2912
[81.]
S.I. Sokol, E.L. Portnay, J.P. Curtis, M.A. Nelson, P.R. Hebert, J.F. Setaro, et al.
Modulation of the renin-angiotensin-aldosterone system for the secondary prevention of stroke.
Neurology, (2004), 63 pp. 208-213
[82.]
A.B. MacLeod, S. Vasdev, J.S. Smeda.
The role of blood pressure and aldosterone in the production of hemorrhagic stroke in captopril-treated hypertensive rats.
Stroke, (1997), 28 pp. 1821-1828
[83.]
R. Rocha, P.N. Chander, K. Khanna, A. Zuckerman, C.T. Stier Jr.
Mineralocorticoid blockade reduces vascular injury in stroke-prone hypertensive rats.
Hypertension, (1998), 31 pp. 451-458
[84.]
A.M. Dorrance, H.L. Osborn, R. Grekin, R.C. Webb.
Spironolactone reduces cerebral infarct size and EGF-receptor mRNA in stroke-prone rats.
Am J Physiol Regul Integr Comp Physiol, (2001), 281 pp. R944-R950
[85.]
M. Epstein.
Aldosterone as a mediator of progressive renal dysfunction: evolving perspectives.
Intern Med, (2001), 40 pp. 573-583
[86.]
E.G. McMahon.
Eplerenone, a new selective aldosterone blocker.
Curr Pharm Des, (2003), 9 pp. 1065-1075
[87.]
R. Dechend, D. Muller, J.-K. Park, A. Fiebeler, H. Haller, F.C. Luft.
The selective aldosterone receptor antagonist eplerenone reduced cardiovascular and renal end organ damage in transgenic rats with angiotensin II induced hypertension.
Circulation, (2002), 106 pp. 1040
[88.]
M. Epstein, V. Buckalew, F. Martínez, J. Altamirano, B. Roniker, J. Kleiman, et al.
Antiproteinuric efficacy of eplerenone, enalapril, and eplerenone/enalapril combination therapy in diabetic hypertensives with microalbuminuria.
Am J Hypertens, (2002), 15 pp. A24
[89.]
E.D. Burgess, Y. Lacourciere, L.M. Ruilope-Urioste, S. Oparil, J.H. Kleiman, S. Krause, et al.
Long-term safety and efficacy of the selective aldosterone blocker eplerenone in patients with essential hypertension.
Clin Ther, (2003), 25 pp. 2388-2404
[90.]
K.F. Croom, C.M. Perry.
Eplerenone: a review of its use in essential hypertension.
Am J Cardiovasc Drugs, (2005), 5 pp. 51-69
[91.]
G.M. Keating, G.L. Plosker.
Eplerenone: a review of its use in left ventricular systolic dysfunction and heart failure after acute myocardial infarction.
Drugs, (2004), 64 pp. 2689-2707
[92.]
C.S. Cook, L.M. Berry, R.H. Bible, J.D. Hribar, E. Hajdu, N.W. Liu.
Pharmacokinetics and metabolism of [14C]eplerenone after oral administration to humans.
Drug Metab Dispos, (2003), 31 pp. 1448-1455
[93.]
N.J. Brown.
Eplerenone: cardiovascular protection.
Circulation, (2003), 107 pp. 2512-2518
[94.]
N.U. Khan, A. Movahed.
The role of aldosterone and aldosterone-receptor antagonists in heart failure.
Rev Cardiovasc Med, (2004), 5 pp. 71-81
[95.]
B.J. Barnes, P.A. Howard.
Eplerenone: a selective aldosterone receptor antagonist for patients with heart failure.
Ann Pharmacother, (2005), 39 pp. 68-76

Financiaci Beca SAF-2005-04609 y Red RECAVA.

Copyright © 2006. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?