Publique en esta revista
Información de la revista
Vol. 54. Núm. 5.
Páginas 635-642 (Mayo 2001)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 54. Núm. 5.
Páginas 635-642 (Mayo 2001)
Acceso a texto completo
Temas actuales en biología vascular: puesta al día para el siglo Xxi
Current Topics in Vascular Biology: an Update for the 21st Century
Visitas
...
Cam Pattersona
a Department of Internal Medicine, and Lineberger Comprehensive Cancer Center. University of North Carolina at Chapel Hill. Chapel Hill. North Carolina. EE.UU.
Este artículo ha recibido
...
Visitas
(Actualización diaria de datos)
Información del artículo
Estadísticas
Figuras (1)
Aunque se da por sentado que los vasos sanguíneos desempeñan un papel primordial en la regulación del sistema cardiovascular en condiciones fisiológicas y patológicas, el mecanismo por el que lo hacen no ha sido comprendido hasta las últimas décadas. El campo de la biología vascular nació de esta apreciación de la primacía de los vasos sanguíneos en la patología cardiovascular. En esta revisión actualizamos varios temas de particular interés en el campo de la biología vascular del siglo xxi: principalmente el papel del estrés oxidativo en la función y la disfunción vascular; la angiogénesis y las terapias génicas angiogénicas, y los biomarcadores emergentes de aterosclerosis. Es probable que cada una de estas áreas experimente avances significativos en los años venideros que tendrán un impacto clínico directo sobre la toma de decisiones y el cuidado de los pacientes con enfermedades cardiovasculares.
Palabras clave:
Biología vascular
Estrés oxidativo
Angiogénesis
Terapia génica
Aterosclerosis
Although taken for granted in the present day, the central role played by the blood vessels themselves in regulating the cardiovascular system under physiologic and pathologic conditions has only been understood in the last several decades. The field of vascular biology grew out of this appreciation of the primacy of the vasculature in cardiovascular pathologies. In this review, we come up to date on several topics of particular interest to the field of vascular biology as it enters the 21 st century: namely, the role of oxidative stress in vascular function and dysfunction; angiogenesis and angiogenic gene therapies; and emerging biomarkers of atherosclerosis. Each of these areas is likely to experience significant advances in the coming years that will directly impact clinical decision-making and care of patients with cardiovascular diseases.
Keywords:
Vascular biology
Oxidative stress
Angiogenesis
Angiogenic gene therapy
Atherosclerosis
El Texto completo está disponible en PDF
Bibliografía
[1]
Ross R, Glomset J, Harker L..
Response to injury and atherogenesis..
Am J Pathol, 86 (1977), pp. 675-684
[2]
Van der Wal AC, Becker AE, van der Loos CM, Das PK..
Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques in characterized by an inflammatory process irrespective of the dominant plaque morphology..
Circulation, 89 (1994), pp. 36-44
[3]
Irani K..
Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling..
Circ Res, 87 (2000), pp. 179-183
[4]
Rao GN, Berk BC..
Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression..
Circ Res, 70 (1992), pp. 593-599
[5]
Lander HM..
An essential role for free radicals and derived species in signal transduction..
FASEB J, 11 (1997), pp. 118-124
[6]
Investigators GP..
Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto miocardico..
Lancet, 354 (1999), pp. 447-455
[7]
Rapola JM, Virtamo J, Ripatti S, Huttunen JK, Albanes D, Taylor PR et al..
Randomised trial of alpha-tocopherol and beta-carotene supplements on incidence of major coronary events in men with previous myocardial infarction..
Lancet, 349 (1997), pp. 1715-1720
[8]
Stephens NG, Parsons A, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ et al..
Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS)..
Lancet, 347 (1996), pp. 781-786
[9]
Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P..
Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators..
N Engl J Med, 342 (2000), pp. 154-160
[10]
Patterson C, Madamanchi N, Runge MS..
The oxidative paradox: another piece of the puzzle..
Circ Res, 87 (2000), pp. 1074-1076
[11]
Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW..
Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells..
Circ Res, 74 (1994), pp. 1141-1148
[12]
Ohara Y, Peterson TE, Harrison DG..
Hypercholesterolemia increases endothelial superoxide anion production..
J Clin Invest, 91 (1993), pp. 2546-2551
[13]
Sundaresan M, Yu Z-X, Ferrans VJ, Irani K, Finkel T..
Requirement for generation of H2O2 for platelet-derived growth factor signal transduction..
Science, 270 (1995), pp. 296-299
[14]
Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C et al..
Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin: evidence that p47phox may participate in forming this oxidase in vitro and in vivo..
J Biol Chem, 274 (1999), pp. 19814-19822
[15]
Saldeen T, Li D, Mehta JL..
Differential effects of *-and *-tocopherol on LDL oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis..
J Am Coll Cardiol, 34 (1999), pp. 1208-1215
[16]
Ushio-Fukai M, Zafari A, Fukui T, Ishizaka N, Griendling K..
p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells..
J Biol Chem, 271 (1996), pp. 23317-23321
[17]
Suh YA, Arnold RS, Lassegue B, Shi J, Xu X, Sorescu D et al..
Cell transformation by the superoxide-generating oxidase Mox1..
Nature, 401 (1999), pp. 79-82
[18]
Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M et al..
Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells..
J Clin Invest, 92 (1993), pp. 1866-1874
[19]
Baas AS, Berk BC..
Differential activation of mitogen-activated protein kinases by H2O2 and O2­ in vascular smooth muscle cells..
Circ Res, 77 (1995), pp. 29-36
[20]
Steinberg D..
Low density lipoprotein oxidation and its pathobiological significance..
J Biol Chem, 272 (1997), pp. 20963-20966
[21]
Induction of rat aortic smooth muscle cell growth by the lipid peroxidation product 4-hydroxy-2-nonenal Circulation 1998; 97: 1071-1078.
[22]
Ballinger SW, Patterson C, Yan C-N, Doan R, Burow DL, Young CG et al..
Hydrogen peroxide­ and peroxynitrite-induced mitochondrial DNA damage and dysfunction in vascular endothelial and smooth muscle cells..
Circ Res, 86 (2000), pp. 960-966
[23]
Pratico D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP et al..
IPF2alpha-I: an index of lipid peroxidation in humans..
Proc Natl Acad Sci USA, 95 (1998), pp. 3449-3454
[24]
Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S et al..
Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs..
Circulation, 89 (1994), pp. 2183-2189
[25]
Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S et al..
Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model..
J Clin Invest, 93 (1994), pp. 662-670
[26]
Tsurumi Y, Takeshita S, Chen D, Kearney M, Rossow ST, Passeri J et al..
Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion..
Circulation, 94 (1996), pp. 3281-3290
[27]
Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K et al..
Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patientswith critical limb ischemia..
Circulation, 97 (1998), pp. 1114-1121
[28]
Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al..
Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia..
Circulation, 98 (1998), pp. 2800-2804
[29]
Patterson C, Runge MS..
Therapeutic myocardial angiogenesis via vascular endothelial growth factor gene therapy: moving on down the road..
Circulation, 102 (2000), pp. 940-942
[30]
Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM..
VEGF gene delivery to myocardium: deleterious effects of unregulated expression..
Circulation, 102 (2000), pp. 898-901
[31]
Scharwz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH et al..
Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat ­ angiogenesis and angioma formation..
J Am Coll Cardiol, 35 (2000), pp. 1323-1330
[32]
Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW et al..
Angiogenesis gene therapy: phase I assessment of direct intramyocardial administration of an adenovirus vector expressing VEGF121 cDNA to individuals with clinically significant severe coronary artery disease..
Circulation, 100 (1999), pp. 468-474
[33]
Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ et al..
Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect..
Circulation, 101 (2000), pp. 118-121
[34]
Schumacher B, Stegmann T, Pecher P..
The stimulation of neoangiogenesis in the ischemic human heart by the growth factor FGF: first clinical results..
J Cardiovasc Surg, 39 (1998), pp. 783-789
[35]
Schumacher B, Pecher P, von Specht BU, Stegmann T..
Induction of neoangiogenesis in ischemic myocardium by human growth factors: first clinical results of a new treatment of coronary heart disease..
Circulation, 97 (1998), pp. 645-650
[36]
Laham RJ, Sellke FW, Edelman ER, Pearlman JD, Ware JA, Brown DL et al..
Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial..
Circulation, 100 (1999), pp. 1865-1871
[37]
Udelson HE, Dilsizian V, Laham RJ, Chronos N, Vansant J, Blais M et al..
Therapeutic angiogenesis with recombinant fibroblast growth factor-2 improves stress and rest myocardial perfusion abnormalities in patients with severe symptomatic chronic coronary artery disease..
Circulation, 102 (2000), pp. 1605-1610
[38]
Koestner W..
Endarteritis and arteritis..
Berl Klin Wochenschr, 13 (1876), pp. 454-455
[39]
Wolinsky H, Glagov S..
Nature of species differences in the medial distribution of aortic vasa vasorum in mammals..
Circ Res, 20 (1967), pp. 409-421
[40]
Heistad DD, Armstrong ML..
Blood flow through vasa vasorum of coronary arteries in atherosclerotic monkeys..
Arteriosclerosis, 6 (1986), pp. 326-331
[41]
Kumamoto M, Nakashima Y, Sueishi K..
Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance..
Human Pathology, 26 (1995), pp. 450-456
[42]
Barger AC, Beeuwkes R, Lainey LL, Silverman KJ..
Hypothesis: vasa vasorum and neovascularization of human coronary arteries..
N Engl J Med, 310 (1984), pp. 175-177
[43]
O'Brien ER, Garvin MR, Dev R, Stewart DK, Hinohara T, Simpson JB et al..
Angiogenesis in human coronary atherosclerotic plaques..
Am J Pathol, 145 (1994), pp. 883-894
[44]
Zamir M, Silver M..
Hemorrhagic and microvascular phenomena within the arterial wall..
Can J Cardiol, 8 (1992), pp. 981-984
[45]
Egashira K, Inou Y, Hirooka Y, Yamada A, Marouka Y, Kai H et al..
Impaired coronary blood flow response to acetylcholine in patients with coronary risk factors and proximal atherosclerotic lesions..
J Clin Invest, 91 (1993), pp. 29-37
[46]
Carmeliet P, Collen D..
Gene targeting and gene transfer studies of the plasminogen/plasmin system: implications in thrombosis, hemostasis, neointima formation, and atherosclerosis..
FASEB J, 9 (1995), pp. 934-938
[47]
O'Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D et al..
Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques..
J Clin Invest, 92 (1993), pp. 945-951
[48]
O'Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE..
Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content..
Circulation, 93 (1996), pp. 672-682
[49]
Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W, Folkman J..
Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice..
Circulation, 99 (1999), pp. 1726-1732
[50]
Ruef J, Hu ZY, Yin LY, Wu Y, Hanson SR, Kelly AB et al..
Induction of vascular endothelial growth factor in balloon-injured baboon arteries..
Circ Res, 81 (1997), pp. 24-33
[51]
McCully KS, Wilson RB..
Homocysteine theory of atherosclerosis..
Atherosclerosis, 22 (1975), pp. 215-227
[52]
Rodgers GM, Kane WH..
Activation of endogenous factor V by a homocysteine-induced vascular endothelial cell activator..
J Clin Invest, 77 (1986), pp. 1909-1916
[52]
Harker LA, Slichter SJ, Scott CR, Ross R..
Homocysteinemia: Vascular injury and arterial thrombosis..
N Engl J Med, 291 (1974), pp. 537-543
[54]
Tsai JC, Perrella MA, Yoshizumi M, Hsieh CM, Haber E, Schlegel R et al..
Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis..
Proc Natl Acad Sci USA, 91 (1994), pp. 6369-6373
[55]
Boushey CJ, Beresford SA, Omenn GS, Motulsky AG..
A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probably benefits of increasing folic acid intakes..
JAMA, 274 (1994), pp. 1049-1057
[56]
Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D et al..
A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians..
JAMA, 268 (1992), pp. 877-881
[57]
Eikelboom JW, Lonn E, Genest J, Hankey G, Yusuf S..
Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence..
Ann Intern Med, 131 (1999), pp. 363-375
[58]
Frothingham C..
The relation between acute infectious diseases and arterial lesions..
Arch Intern Med, 8 (1911), pp. 153-162
[59]
Fabricant CG, Fabricant J, Litrenta MM, Minick CR..
Virus-induced atherosclerosis..
J Exp Med, 148 (1978), pp. 335-340
[60]
Fong IW..
Emerging relations between infectious diseases and coronary artery disease and atherosclerosis..
CMAJ, 163 (2000), pp. 49-56
[61]
Anderson JL, Muhlestein JB, Carlquist J, Allen A, Trehan S, Nielson C et al..
Randomized secondary prevention trial of azithromycin in patients with coronary artery disease and serological evidence for Chlamydia pneumoniae infection..
Circulation, 99 (1999), pp. 1540-1547
[62]
Gupta S, Leatham EW, Carrington D, Mendall MA, Kaski JC, Camm AJ..
Elevated Chlamydia pneumoniae antibodies, cardiovascular events, and azithromycin in male survivors of acute myocardial infarction..
Circulation, 96 (1997), pp. 404-407
[63]
Gurfinkel C, Bozovich G, Doroca A, Beck E, Mautner B..
Randomized trial of roxithromycin in non-Q-wave coronary syndromes: The ROXIS pilot study..
Lancet, 350 (1997), pp. 404-407
[64]
Gurfinkel C, Bozovich G, Beck E, Testa E, Livellura B, Mautner B..
Treatment with the antibiotic roxithromycin in patients with acute non-Q-wave coronary syndromes. The final report of the ROXIS study..
Eur Heart J, 20 (1999), pp. 121-127
[65]
Libby P, Galis Z..
Cytokines regulate genes involved in atherogenesis..
Ann NY Acad Sci, 748 (1995), pp. 158-168
[66]
Libby P..
Changing concepts of atherogenesis..
J Int Med, 247 (2000), pp. 349-358
[67]
Ridker PM, Hennekens CH, Roitman-Johnson B, Stampfer MJ, Allen J..
Plasma concentrations of soluble intracellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy young men..
[68]
Kuller LH, Tracy RP, Shaten J, Meilahn EN..
Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study: Multiple Risk Factor Intervention Trial..
Am J Epidemiol, 144 (1996), pp. 537-547
[69]
Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH..
Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men..
N Engl J Med, 336 (1997), pp. 973-979
[70]
Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH..
Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women..
Circulation, 98 (1998), pp. 731-733
Idiomas
Revista Española de Cardiología

Suscríbase a la newsletter

Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

es en
Política de cookies Cookies policy
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.