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INTRODUCTION

Few topics are as consequential, even in medicine, as the

potential ability of modern technology to develop capabilities

similar to those of human beings. The ability of machines or

computer systems to mimic human intelligence processes is called

artificial intelligence (AI). AI is becoming highly advanced in other

professional disciplines and our current challenge is to transfer all of

this development to the medical field and specifically to cardiology.

This article aims to clarify for the reader various terms that may

still seem foreign, not just AI, but also machine learning (ML), deep

learning (DL), data science, and big data, and to describe in detail

the concept of AI and its types, the learning techniques and

methodology used by ML, cardiac imaging analysis with DL, the

contribution of this technological revolution to classic statistics,

and its current limitations, legal aspects, and, critically, initial

applications in cardiology.

DATA SCIENCE

The terms data science, big data, AI, and ML have different

meanings, despite belonging to the same discipline: the analysis
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A B S T R A C T

There is currently no other hot topic like the ability of current technology to develop capabilities similar

to those of human beings, even in medicine. This ability to simulate the processes of human intelligence

with computer systems is known as artificial intelligence (AI). This article aims to clarify the various

terms that still sound foreign to us, such as AI, machine learning (ML), deep learning (DL), and big data. It

also provides an in-depth description of the concept of AI and its types; the learning techniques and

technology used by ML; cardiac imaging analysis with DL; and the contribution of this technological

revolution to classical statistics, as well as its current limitations, legal aspects, and initial applications in

cardiology. To do this, we conducted a detailed PubMed search on the evolution of original contributions

on AI to the various areas of application in cardiology in the last 5 years and identified 673 research

articles. We provide 19 detailed examples from distinct areas of cardiology that, by using AI, have shown

diagnostic and therapeutic improvements, and which will aid understanding of ML and DL methodology.
�C 2019 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

Aplicaciones de la inteligencia artificial en cardiologı́a: el futuro ya está aquı́
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R E S U M E N

Existen pocos temas de actualidad equiparables a la posibilidad de la tecnologı́a actual para desarrollar

las mismas capacidades que el ser humano, incluso en medicina. Esta capacidad de simular los procesos

de inteligencia humana por parte de máquinas o sistemas informáticos es lo que conocemos hoy en dı́a

como inteligencia artificial (IA). Este artı́culo pretende aclarar diferentes términos que todavı́a nos

resultan lejanos como IA, machine learning (aprendizaje automático, AA), deep learning (aprendizaje

profundo, AP), data science o big data; describir en profundidad el concepto de IA y sus tipos, las técnicas

de aprendizaje y la metodologı́a que se utiliza en el AA, el análisis en imagen cardiaca con AP, la

aportación de esta revolución tecnológica a la estadı́stica clásica, sus limitaciones actuales, sus aspectos

legales y, fundamentalmente, sus aplicaciones iniciales en cardiologı́a. En este sentido se ha realizado

una búsqueda detallada en PubMed de la evolución en el último lustro de las contribuciones de la IA a las

diferentes áreas de aplicación en cardiologı́a, y se ha identificado un total de 673 artı́culos originales. Se

describen en detalle 19 ejemplos de diferentes áreas de la cardiologı́a que utilizando IA han mostrado

mejoras diagnósticas y terapéuticas, y que facilitarán la comprensión de la metodologı́a AA y AP.
�C 2019 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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and extraction of information from data. However, these concepts

are sometimes used interchangeably and in ambiguous ways.

The term big data was first coined in 2005 by R. Magoulas, who

described it as a massive volume of data that, due to size,

overwhelms traditional storage and processing software. In turn,

the world of big data revolves around 7 Vs: data volume, velocity,

variety, veracity, validity, volatility, and value. That is, big data

generate information at high speed, controlling the integrity of the

data and exhibiting huge variety in terms of nature and type (eg,

text, images, videos, different systems, and different providers). In

cardiology, big data would be viable within a framework of

national, European, or global collaboration, involving data

homogenization and sharing by hospital entities to create large-

volume repositories. These large databanks can support our daily

practice by helping to establish protocols, promote standardized

and early disease diagnosis, aid prognosis of disease progression,

and support treatment planning for our patients.1

This type of information processing would not be possible

without recent technological advances in AI. AI uses tools able to

identify existing patterns in data. It was defined for the first time in

the 1950s and encompasses multiple subdisciplines, from expert

systems and robotics to ML. It is precisely this last term that we

will focus on in this review due to the major advances in the field in

recent years.

The term machine learning was first coined in 1959 by AL

Samuel.2 Its objective is to develop algorithms enabling computer

systems to make decisions and learn from the results; these

systems would thus be able to learn to do something without

having been explicitly provided with the programming required.

Among the many ML techniques, there is more and more

interest in DL models.3 These base their predictive power on

artificial neural networks (NNs) and are characterized by having

multiple layers of information processing (transformations) that

allow them to analyze datasets with more complex patterns. These

algorithms are enabling pivotal advances in speech and image

recognition; the latter is particularly important in cardiology.

The data science field encompasses all aspects related to the

derivation of the existing information contained in data. It involves

scientific methods, processes, and systems to extract knowledge or

develop a better understanding of data, normally applying

novel processing techniques such as AI. Although AI and ML are

often used as synonyms, they are different. AI covers a broader

scope of this technological revolution and includes both ML and DL

(figure 1A). The right-hand panel of figure 2 illustrates the interest

triggered by these concepts in the last 3 years, with increasing

interest in ML, AI, data science, and DL. Big data is the most

common term In Spain, southern Europe, and South America,

maching learning in the United States, Canada, the United Kingdom,

northern Europe, and Australia and deep learning in China and

Japan.

ARTIFICAL INTELLIGENCE

Nowadays, it is difficult to find a universal definition of what is

known as AI. The term itself is often applied to the field of

computer science that tries to mimic human cognitive processes,

learning capacity, and knowledge storage. Other definitions are

broader and encompass the understanding and construction of

intelligent entities, generally understood as computer software. In

terms of types of task, AI can refer to automated systems capable

of, for example, translating a document, recognizing people by

their facial features, or driving a car. However, AI is not limited to

imitating human tasks: in some cases, it is able to beat the best

expert in a field by making decisions with lower error rates than

humanly possible or by identifying patterns imperceptible to the

human eye.4 Therefore, AI allows information to be analyzed with a

distinct approach from the traditional one. Thus, when responding

to an event, we are no longer limited to describing the available

information. AI allows other questions to be answered: what

happened? (diagnosis), what will happen? (prediction), and what

should I do? (prescription).

The most important application areas of AI in the health care

field include the following: automatic speech recognition and

natural language processing; prediction, recommendation, and

diagnostic algorithms; computer vision and image analysis;

robotics; and AI and expert systems.

Automatic speech recognition and natural language processing

The aim of these disciplines is to develop mechanisms for

communication between people and machines using natural

language. In the medical field, automatic speech recognition is

already being used to record patients’ clinical information.5 In

addition, natural language processing is allowing, as already seen

in several examples in Spain in the field of cardiology, disease

classification and the selection of the most appropriate cohort for a

clinical study by analyzing medical record registries.6

Prediction, recommendation, and diagnostic algorithms

This is probably the most mature area in the worlds of medicine

and cardiology and of ML and DL. Interest primarily lies both in the

automation of repetitive tasks, such as the evaluation of diagnostic

tests, and in knowledge generation through clinical data analysis. A

major part of this article focuses on describing the methodology to

be followed in this type of study and introducing use cases in

cardiology.

Computer vision and image analysis

This scientific discipline encompasses methods to acquire,

process, analyze, and understand real-world images in order to

produce numerical or symbolic information that can be processed

by a computer. These techniques have undergone a major

revolution in recent years due to the application of DL algorithms

and it is one of the disciplines making the greatest contribution to

medicine today, and therefore to cardiology, as detailed below.

Robotics and artificial intelligence

In robotics and AI, the objective is to build physical systems

with intelligent behavior. This field has undergone many years of

development but is experiencing a boom in the various areas it

includes (eg, automatic speech recognition, computer vision). In

the cardiovascular area, its development has been ongoing for

years in the field of surgery, with a clear example being the Da

Vinci surgical system.7

Abbreviations

AI: artificial intelligence

DL: deep learning

ML: machine learning

NN: neural network
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Figure 1. A: Venn diagram of the most commonly used terms in the data science disciplines. B: total searches (source: Google Trends) in the last 5 full years of terms

related to artificial intelligence and data science; the vertical axis of the diagram represents the proportion of a topic with respect to the total number of searches on

the topics. C: the most searched term in each country in the same period.
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Expert systems

In AI, an expert system is software that emulates the decision-

making ability of a human expert. These systems are based on rules

or even clinical cases. For some time, expert medical systems have

been available that try to simulate the reasoning of specialists and

provide the probable diagnosis and optimal patient management,

even in cardiology.8

MACHINE LEARNING: TECHNIQUES

ML is an area of data science that forms part of what is known

today as AI. ML involves the creation of systems that learn

automatically; they understand by autonomously ‘‘learning’’ the

ability to recognize complex patterns, without the need for human

intervention and in datasets of any kind, including numerical, visual,

and textual. As the experience of these systems increases, that is, as

they are provided with new data, their performance improves to a

point that may even exceed the human capacity in that task.

Although there are several ML techniques, they are usually

grouped into 2 types: supervised learning and unsupervised

learning.

Supervised learning techniques are undoubtedly the most

widely used methods in ML and those with the best results. These

procedures rely on a dataset from which the response variable to

be predicted (eg, diagnosis, parameter, segmentation) is deter-

mined through the correct labeling of examples. Depending on the

type of prediction, classification algorithms or regressive algo-

rithms are used. In the first case, the aim is to identify 2 or more

classes using a series of variables. In contrast, regressive algorithms

seek to approximate a continuous value as much as possible.

In unsupervised learning techniques, there is no information on

the variable to be predicted. These techniques must learn from the

relationships among the elements of a dataset and classify them

without relying on labels or categories. To do this, they look for

structures, patterns, or characteristics in the source data that can

be reproduced in new datasets. For this task, clustering methods

are the most commonly used approaches.

MACHINE LEARNING: METHODOLOGY

The construction of an ML model does not simply involve the

application of a learning algorithm to a database, but is a whole

process,9,10 which usually includes the steps shown in figure 2.

The first stages are common to conventional statistics; raw data

are converted into information with structured data (prepro-

cessed), and an initial database is constructed (step 1 of figure 2).

From this database, a descriptive and exploratory analysis is

performed to identify and select the most significant variables;

these variables will be directly applied to the ML algorithms (step

2 of figure 2).

The next stage, now specific to ML techniques, is the division of

the dataset into 3 subsets—training, validation, and testing—,

typically 60%, 20%, and 20%, respectively (step 3 of figure 2).

The training set is the dataset used to adjust the various ML

algorithms selected (step 4 of figure 2). A wide range of

classification and regression algorithms is available11 (table 1),

from more classic linear techniques such as logistic regression or

linear discriminant analysis to more modern ones such as

aggregation-type or bagging (random forest) algorithms and

packaging or boosting (xgboost) algorithms. In addition, subsam-

pling and oversampling techniques can be used when, as often

occurs in health data, one category has many more cases than

another. In theory, no algorithm is better than another; its ability to

make a good adjustment will depend on the characteristics of the

data (eg, number of variables, linearity, normality, missing values,

and continuous or categorical variables).

Once the adjustment has been made, the validation data subset

is used to evaluate the quality of the model (step 5 of figure 2). To

do this, the aim is to maximize the metric of greatest interest in our

particular case, such as area under the ROC curve, precision,

sensitivity, and accuracy (figure 3). It is common for this training-

validation process to be repeated a number of times while

randomizing both subsets, which is known as k-fold cross-

validation. The objective is to optimize the internal parameters

of the algorithm used, evaluate the robustness of the model, and

determine whether the model is subadjusting or overadjusting the

data, trying to find a balance between the 2 scenarios.

Once the final model has been constructed, the test data subset

is used to verify that the final ML model behaves as expected with

data that has not been used for its construction or validation (step

6 of figure 2). If this result differs from that obtained in the

validation set, the dataset used for training is probably insufficient

and should be expanded if a reliable estimator is needed before its

generalized use (step 7 of figure 2).

For the implementation of ML, the most commonly used open

source programming languages are currently Python and R. Both

platforms can avail of libraries such as scikit-learn (Python) and

caret (R) with implementations of the most widely used

techniques and algorithms.

DEEP LEARNING AND CARDIAC IMAGING

Image analysis is the field with the most rapid advances in AI and

is therefore highly relevant in cardiology. The daily analysis of various

cardiological images can be tedious and time consuming. However,

our day-to-day work can already be improved by the various tools,

based on NNs, available for automatic image processing.

NNs3 are a type of AI algorithm that is analogous to the learning

process occurring in the neurons of the brain. Since its develop-

ment as a computational model, training algorithms and network

architectures have emerged that have considerably improved

Table 1

Most used algorithms in machine learning

Algorithm Type Description

Random forest Ensemble method Combination of uncorrelated decision trees

Gradient boosting Ensemble method Combination of stepwise decision trees

Logistic regression Regression Regression analysis used to predict the result from a categorical variable

Support vector machines Supervised classifier Classification through construction of separating hyperplanes

k-nearest neighbors Supervised classifier Estimation of the density function of predictor variables according to class

Linear discriminant analysis Linear discriminant Fisher’s linear discriminant generalization

Naive Bayesian classifier Supervised probabilistic classifier Probabilistic classifier based on Bayes theorem

P.I. Dorado-Dı́az et al. / Rev Esp Cardiol. 2019;72(12):1065–10751068



learning accuracy and efficiency, functioning with ever smaller

amounts of training data. When these architectures consist of

numerous layers of neurons, the term DL is used. Currently, the

most commonly applied NNs include convolutional NNs, recursive

NNs, generative adversarial networks, and U-nets, each with

different uses and architectural subtypes. NNs are also very flexible

and can be used in supervised, unsupervised, and reinforcement

learning contexts. For their implementation, various open source

platforms are available, such as TensorFlow, Pytorch, Keras, and

Caffe. The disadvantages of DL techniques include their high

computational cost. In addition, a high degree of expertise is

required for their correct adjustment and, in the case of supervised

learning, a set of manually annotated images is required, which can

sometimes be extremely expensive.

Within the field of cardiac imaging, AI techniques have several

objectives. These include segmentation and identification of the

different structures of the heart (figure 4),12,13 classification of

images cataloged with different conditions, lesion detection and

segmentation, image registration, and classification of tissues from

histological images. Other tasks are related to the generation of

artificial images that are as realistic as possible.

Research applying DL techniques to cardiological imaging has

burgeoned in the last 3 years. However, the use of DL techniques in

medical imaging has made more of a mark in other disciplines,

such as neurology and pneumology.14 Among the challenges likely

to be explored in the coming years are combined analyses of

different imaging sources, the incorporation of clinical data and

medical reports, and the study of temporal changes in cardiac

images.

LIMITATIONS OF MACHINE LEARNING AND DEEP LEARNING

The main characteristic of AI in terms of ML or DL models is that

learning is based on the identification of patterns in datasets. This

philosophy is simultaneously a strong point, because computers

are extremely efficient and precise at finding such patterns when

they exist, and a limitation, for several reasons. First, because the

amount of data required to obtain an accurate model can be

substantial. This can be a problem in medicine, where the

implementation of automatic data collection systems is just

beginning, such systems must meet established legal and ethical

criteria, and some rare diseases inevitably have few studies. In

addition, even with algorithms with good results for a dataset, ML

and DL models suffer from an inability to correctly detect and

classify cases that they have not previously seen. Along these lines,

the reliability and quality of the data source are essential for an

algorithm to be realistic and correct. If the dataset used to adjust

the model is itself biased, the model may not be well generalized to

other populations.15 This problem is nothing new in our daily work

because we accept risk scales based on data from other

populations, such as the Framingham score for cardiovascular

risk, resulting in erroneous results that overestimate or underesti-

mate the risk upon application to other populations.16 Initiatives

are underway to standardize the requirements that must be met by

an AI algorithm for its possible practical application.17 For all of

these reasons, it seems clear that particular effort will be needed

for the integration of datasets from different populations.

Another important limitation is the opacity and interpretability

of the ML models, particularly the DL models. These techniques are

used as ‘‘black boxes’’, which are fed inputs to obtain an output,

namely a prediction. Thus, ML offers us answers in the form of

predictions, but not a biological explanation. Although there are

various methodologies to interpret the results of a model and

verify its correct functioning through analysis of the specific

weights of parameters or variables and to highlight the most

discriminating parts or the individual explanation of each

prediction,18 it is not currently possible to know exactly why

the more complex ML and DL models make a certain decision. This

limitation makes it difficult to generate knowledge and to apply AI

to an area as critical as medicine.

MACHINE LEARNING AND CLASSIC STATISTICS: SIMILARITIES
AND DIFFERENCES

Although these 2 specialties have different origins, they also

have common features, despite their distinct purposes.

The cornerstone of classic statistics is inference. In inference,

the observations in a sample are extended to the entire population,

generally creating a mathematical model that defines the

relationship among variables. The strength of ML lies in a

prediction based on the available information, without the need

to know the mechanisms relating the variables to each other. These

characteristics are not exclusive because, to a greater or lesser

extent, both disciplines use inferential techniques to improve their

results (ML) or predictive algorithms to corroborate inferential

conclusions (statistics).

Compared with statistical techniques, those of ML do not

require prior suppositions about the variables, have the ability to

handle cases with missing data, and improve their reliability when

large volumes of data are available by detecting complex

relationships among variables.
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LEGAL AND ETHICAL ASPECTS OF ARTIFICIAL INTELLIGENCE

When AI is applied to the world of medicine, issues can arise

that are not strictly related to the quality of the ML and DL

algorithms. These are connected to legal problems associated with

the automatic processing of personal data or how to apply ML in

day-to-day practice.

Practically all AI techniques studied to date require a certain

amount of data for the training and validation of predictive models.

In our case, the information used is particularly sensitive because it

generally involves patients’ personal and clinical data. Therefore,

the proper use of this information from a legal point of view is a

critical aspect.

Personal data protection is a fundamental right enshrined in the

Spanish Constitution. However, such data may be used under

certain conditions if a service is being provided to society. If both

the organization collecting the information and that processing the

data are fiscally resident in Spain, they must, since 2018, comply

with Organic Law 3/2018 of December 5th, 2018, on the Protection

of Personal Data and the Guarantee of Digital Rights.19According to

this legislation, the use of personal data is allowed for statistical

purposes, as long as the results are aggregated. It is also necessary

to adopt measures to anonymize and protect these data, and a

number of rights of the individuals concerned is recognized, such

as to be informed, have access, and be allowed rectification.

Therefore, given that the use of cloud computing services is very

common in AI due to their flexibility and greater computing power,

the largest providers have adapted their data-processing policies

to provide a completely secure service. In addition, these

companies adhere to the CISPE (Cloud Infrastructure Services

Providers in Europe) Code of Conduct to guarantee that their data

protection standards comply with the legislation. Likewise, in

situations where an AI model is used as a diagnostic or decision-

making tool, the patient must be informed and provide consent.

The subtle discrimination inherent in the provision of health

services can also be a problem when AI models are being developed

and applied.15 For example, age is considered when scarce resources

are being rationed, such as heart transplants. Such a consideration

can lead to self-fulfilling prophecies: if physicians withdraw care for

patients due to their advanced age, ML systems may conclude that

the care of older patients is always fatal. On the other hand, it is also

possible for ML models to help to resolve disparities in the provision

of medical care if algorithms can be constructed to compensate for

known biases or identify pressing areas of research.

There is broad discussion about how AI will affect the workflow

of medical staff. AI might not eliminate jobs, but rather displace

medical practice tasks. Routine and tiring jobs could be performed

by machines to free up time and allow medical professionals to

carry out more complex and sensitive tasks. However, the use of

automatic diagnostic tools can lead to problems of bias in decision-

making and in the assignment of responsibility in the case of error.

Physicians may be inclined to review a diagnostic test in a more

relaxed way if an algorithm has previously returned a negative

result. The design of decision-making systems that involve both

machines and humans is a crucial aspect for AI, and there are

intermediate models between conventional clinical practice and

fully automated systems, each with different characteristics of cost

and time efficiency, risk, and interpretability.20 The implementa-

tion of these systems will be an area with a fundamental role for

clinicians as validators.

ARTIFICIAL INTELLIGENCE IN CARDIOLOGY

Examples of AI using ML or DL are becoming more and more

common in cardiology.21 This section presents the evolution of the

contributions of AI to the different application areas of cardiology

(figure 5).

The supplementary material for this article includes a list of the

contributions of the techniques described in several areas of

cardiology in the last 5 full years and from January to March 2019,

as well as a detailed description of the publications that we

consider of most interest and that will help to explain the ML and

DL models (table 2).22–40 Many of the publications reviewed are

the result of common initiatives in AI, such as challenges promoted

in conferences24,41 and datathons. In datathons, which are public

and open competitions, people interested in the subject, from

beginners to experts, work together with common databases to

achieve an established goal. Participants must find a solution to a

defined objective in the datasets provided. The most accurate and

creative solutions are awarded a prize and made publicly

accessible.

Cardiac arrhythmias

One of the most widespread applications of ML in cardiology is

the prediction of cardiac arrhythmias. Numerous studies address
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Figure 4. Example of automatic segmentation and identification of the left and right ventricle through deep learning performed in our department from images

obtained with a 1.5-T Philips Achieva resonance system.12 From original images (A), the free neural network13 was able to identify and segment the left and right

ventricles (B, white color for the left ventricle, light gray color for the myocardium of the left ventricle, and dark gray color for the right ventricle).
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predictive models for atrial fibrillation development, including

paroxysmal, due to its impact and clinical implications, using

supervised learning with predictive ML systems composed of

different subprocesses: signal preprocessing, extraction of signifi-

cant variables, and classification algorithms.22,42 Similar ML

models have been developed to improve telemonitoring alarm

management24 and to predict the occurrence of ventricular

arrhythmias,43,44 the response to invasive ablation procedures

such as cryoablation,2,3 and even mortality after resuscitated

cardiac arrest.25 DL techniques have been used with great success

to detect distinct types of arrhythmias through direct analysis of

images or electrocardiographic signals.26 Another application has

been to use unsupervised learning to identify phenotypes to

classify hypertrophic cardiomyopathies with different arrhythmic

risk.45

Ischemic heart disease

AI has been applied to standard electronic medical records from

primary care to predict the risk of cardiovascular disease in the

general population and has been shown to be superior to the

traditionally used risk scales.27 In addition, supervised learning

techniques have been applied to the prognostic prediction of stable

ischemic heart disease,46 coronary syndrome,28 and mortality of

patients with myocardial infarction by analyzing the results of

individual hospitals29 or large registries such as SWEDEHEART.30

The results are disparate due to the sizes of the samples, which

shows that ML techniques obtain better results with large sample

sizes.

Heart failure

ML systems could allow the optimization of avoidable

hospitalizations due to heart failure by more accurately identifying

patients susceptible to cardiac decompensation after hospital

discharge than classic risk scales31,47; these results contradict

initial experience in this field48 and highlight the need to adjust the

methodologies of the systems.49 In addition, initial work has

addressed the usefulness of AI as a management system in the

telemonitoring of patients with HF. Studies have shown that ML is

feasible50 and that it might improve the clinical course of these

patients.32 Another important area is heart transplant, with ML

systems applied to predict the probability of death or transplant in

patients on the waiting list or transplant success.33 Notably, the

clinical response to cardiac resynchronization can be predicted

using ML systems.51

An excellent example of a combination of ML and DL

methodologies in this field is the prediction of diastolic dysfunc-

tion through analysis of echocardiographic data.52 This research,

along with other examples that have used unsupervised learn-

ing,34,53 shows that these procedures can facilitate the standardi-

zation and interpretation of complex heart diseases, such as the

diagnosis of heart failure with preserved systolic function,

enhancing decision-making.

Another study conducted with unsupervised techniques and a

large amount of data from the Swedish Heart Failure Registry was

able to identify 4 phenotypes with different clinical courses and

therapeutic responses.35

Cardiac imaging

Examples of AI using imaging data are beginning to become

popular and will be responsible for a new revolution in the world of

cardiac imaging. ML techniques using data generated from cardiac

imaging quantification have been successfully used to, for

example, predict cardiovascular mortality from extensive echo-

cardiographic databases.36 Similar ML models have been devel-

oped to differentiate the echocardiographic patterns of the

physiological ventricular hypertrophy typical of athletes from

the findings of familial hypertrophic cardiomyopathy.37

Apart from the ML methods, DL has been used to directly

analyze images in several different application domains. Most of

the efforts have focused on segmentation tasks for cardiac tissue

and anatomical structures (eg, the endocardium; figure 4), which is

usually the previous step in other study types, such as those

involving injury detection or disease classification. The first study

purely conducted with DL dates from 2013 and involved

segmentation of the left ventricle from echocardiography.54 Since

2009, datathon-style contests have systematically used a cardiac

imaging tool, mainly with the objective of left and right ventricular

segmentation and based on different images, typically magnetic

resonance imaging and computed tomography.14,41,55 In recent

years, there have been repeated publications on NN architectures

that have improved the state of the technique in terms of heart

segmentation, in both 2-dimensions56,57 and 3-dimensions.41,58,59

There have even been comparative scientific studies of the

automated determination of the endocardium and calculation of

the left ventricular ejection fraction from DL algorithms directly

applied to DICOM images vs manual tracing, with excellent

concordance and speed.38

In the field of echocardiographic imaging, advances have

already been made to implement a fully automatic interpretation,

through the identification of viewpoints, image segmentation, the

quantification of structures and functions, and disease detection.60

Other results related to nonsegmentation tasks obtained in

recent years include calculation of the fractional flow reserve from

coronary computed tomography images,39 measurement of

calcium in coronary arteries,61 quantification and characterization

of coronary and carotid artery tissues,62,63 improvement or

generation of cardiac images,64 detection of stenosis and

atherosclerosis,65 and differentiation of constrictive pericarditis

from restrictive cardiomyopathy.40

Other applications

AI is being widely used in other application domains, which

reflects its versatility. The search for patterns encompasses a

multitude of functionalities, from the prediction of cardiovascular
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Figure 5. Temporal changes in the publications indexed in PubMed on artificial

intelligence, machine learning, and deep learning according to the area of

interest in cardiology. The details of the publications by area of interest and the

search methodology are described in the supplementary material.
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Table 2

Relevant contributions of artificial intelligence to the various application areas of cardiology

Reference, y Area Application Technique Method Results

Ebrahimzadeh

et al.22 (2018)

Arrhythmias Prediction of paroxysmal AF

from heart rate variability

Supervised

learning

Data: 106 signals from 53 pairs of

electrocardiograms for training

Algorithms: KNN, SVM, NN

Sensitivity (100%),

specificity (95%),

accuracy (98%)

Budzianowski

et al.23 (2018)

Arrhythmias Prediction of AF recurrence

after pulmonary vein

cryoablation

Supervised

learning

Data: 118 patients with

56 clinical, laboratory, and

procedural variables from each

patient

Algorithms: GB, SVM,

oversampling

Identification

of 7 predictors

confirming

univariate statistical

analysis

Eerikainen et al.24

(2016)

Arrhythmias Classification of cardiac

arrhythmia alarms in

telemetry

Supervised

learning

Data: PhysioNet/Computing in

Cardiology Challenge 2015

Algorithm: RF

True positive, 95%;

False positive, 83%

Nanayakkara et al.25

(2018)

Arrhythmias Prediction of hospital

mortality in patients with

resuscitated cardiac arrest

from a registry

Supervised

learning

Data: ANZICS registry, 39 566

patients

Algorithms: LR, GB, SVM, NN, RF,

combination (RF, SVM, GM)

Area under the

curve of the best

algorithm: 0.87 (vs

0.80 from the

APACHE III scale

and 0.81 from the

ANZROD)

Yildirim et al.26

(2018)

Arrhythmias Detection of up to 17 types

of arrhythmias from ECG

Supervised

learning

Data: 1000 ECG signal fragments

from the MIT-BIH Arrhythmia

database

Algorithm: convolutional NN

Accuracy (91%)

Weng et al.27 (2017) Cardiovascular

risk

Prediction of cardiovascular

events at 10 years from

electronic medical records

Supervised

learning

Data: 378 256 individuals;

demographic data, medical

records, medical prescriptions,

and biological tests

Algorithms: RF, LR, GB, NN

Area under the

curve of the best

algorithm: 0.76 (vs

0.72 from the ACC/

AHA risk prediction

scales)

Huang et al.28 (2017) Ischemic heart

disease

Prediction of major cardiac

adverse events in patients

with acute coronary

syndrome from electronic

medical records

Supervised

learning

Data: 2930 patients and

268 variables Algorithms: SVM

and RF together with

subsampling and oversampling

techniques

Area under the

curve of the best

algorithm: 0.672

(significant

improvement vs the

GRACE scale, + 4.8%)

Shouval et al.29

(2017)

Ischemic heart

disease

30-day mortality prediction

after myocardial infarction

from a registry

Supervised

learning

Data: 2782 patients with

54 variables

Algorithms: naive Bayes, LR, RF,

PART, ADABoost, ADtree

Area under the

curve of the best

algorithm: 0.91 (vs

0.87 from the GRACE

scale and 0.82 from

the TIMI scale).

Identification of

15 predictor

variables

Wallert et al.30

(2017)

Ischemic heart

disease

2-year survival prediction

after myocardial infarction

from populational, clinical,

and echocardiographic data

Supervised

learning

Data: SWEDEHEART registry,

51 943 patients and 54 variables

Algorithms: SVM, LR, RF, and

Boosted C5.0

Area under the

curve of the best

algorithm (0.84),

negative predictive

value (97%)

Shameer et al.31

(2017)

Heart failure Prediction of

rehospitalizations for heart

failure from electronic

medical records

Supervised

learning

Data: MOUNT SINAI HEART

FAILURE COHORT:

1068 hospitalized patients and

4205 variables

Algorithm: naive Bayes

Area under the

curve of 0.78 and

accuracy of 84%

(previous models

with areas under the

curve of 0.6–0.7)

Inan et al.32 (2018) Heart failure Remote monitoring of

patients with heart failure to

enable treatment

adjustment and avoid

hospitalizations from

electrocardiographic

variables from intelligent

electronic devices

Unsupervised

learning

Data: 45 patients

(13 decompensated)

Algorithm: graph similarity score

Significant

differences between

groups

(compensated vs

decompensated)

Medved et al.33

(2017)

Heart failure Diagnostic prediction in

patients on the heart

transplant waiting list

Supervised

learning

Data: UNOS Registry (United

Network for Organ Sharing),

27.444 patients

Algorithm: NN

F1 scores of 0.674,

0.680, and 0.680 for

prediction at

180,365, and

730 days,

respectively
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risk through fundus analysis4 to that of acute renal failure after

cardiac surgery, for example.66 These patterns can better identify

groups of patients with dissimilar risk, and their incorporation into

clinical practice can help to eliminate uncertainties and improve

clinical outcomes.

CONCLUSIONS

Although AI is often viewed as a futuristic and distant concept,

the truth is that this technology is already in use in all types of

areas, including cardiology. Due to the digitization of large

amounts of data, the development of ML algorithms, and

improvements in computer power in recent decades, AI can

provide excellent opportunities for task automation, the applica-

tion of precision medicine, or research progress through the

detection of complex patterns in medical databases.67 A particular

case is that of medical image analysis, with DL techniques having

undergone a true revolution and their application to the area of

cardiology already yielding excellent results. However, there is still

a long way to go before these techniques can be widely applied to

clinical practice. Essential prerequisites are large databases with

high-quality information and the evaluation and integration of AI

into realistic clinical contexts; therefore, the understanding of AI

and its applications in our field is essential for the present and

future development of cardiology.
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Table 2 (Continued)

Relevant contributions of artificial intelligence to the various application areas of cardiology

Reference, y Area Application Technique Method Results

Sanchez-Martinez

et al.34 (2018)

Heart failure Characterization of heart

failure with preserved

ejection function from

echocardiographic variables

Unsupervised

learning

Data: 156 patients and

22 variables (20 corresponding to

velocity traces on

echocardiography)

Algorithm: clustering

True positive (71%)

Ahmad et al.35

(2018)

Heart failure Prediction of course and

phenotyping of heart failure

patients

Supervised

and

unsupervised

learning

Data: 44 886 patients with

demographic, clinical, and

pharmacological data

Algorithms: RF and cluster

analysis

Identification of

4 phenotypes with

significantly

different courses

and therapeutic

responses

Samad et al.36 (2018) Cardiac imaging Mortality prediction from

echocardiographic variables

and electronic medical

records

Supervised

learning

Data: quantified

echocardiographic variables

(331.317 echoes) and electronic

medical record variables

(171.510 patients)

Algorithms: RF

Area under the

curve of the best

algorithm: 0.89 (vs

0.61 from the

Framingham scale,

0.74 from the ACC/

AHA scale, 0.79 from

the Charlson scale)

Narula et al.37 (2016) Cardiac imaging Identification of

physiological vs

pathological ventricular

hypertrophy from

echocardiographic variables

Supervised

learning

Data: 77 athletes and 62 people

with familial hypertrophic

cardiomyopathy

Algorithms: SVM, RF, NN

Sensitivity (96%)

and specificity (77%)

higher than those of

E/A, é, and

longitudinal strain

Knackstedt et al.38

(2015)

Cardiac imaging Comparative study between

automatic vs manual

quantification of

echocardiographic left

ventricular function

Supervised

learning

Data: 255 patients

Algorithm: automatic

quantification using a deep

learning algorithm for DICOM

images

Feasible automated

measurement (98%).

Concordance, 0.83

Tesche et al.39 (2018) Cardiac imaging Calculation of the fractional

flow reserve from coronary

tomography images

Supervised

learning

Data: coronary CT from

85 patients

Algorithm: SVM

Sensitivity (79%)

and specificity (93%)

Sengupta et al.40

(2016)

Other

applications

Differentiation between

constrictive pericarditis and

restrictive cardiomyopathy

from clinical and

echocardiographic variables

Supervised

learning

Data: clinical and

echocardiographic of 50 patients

with constrictive pericarditis and

44 with restrictive

cardiomyopathy

Algorithms: RF, KNN, SVM

Area under the

curve of the

algorithm 0.96 (vs

0.82 from mitral

annular velocity and

0.64 from

longitudinal strain)

ACC/AHA, American College of Cardiology/American Heart Association; AF, atrial fibrillation; ECG, electrocardiography; GB, gradient boosting; KNN, k-nearest neighbors; LR,

logistic regression; NN, neural network; RF, random forest; SVMs, support vector machines.
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APPENDIX. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found in

the online version, at https://doi.org/10.1016/j.rec.2019.05.014
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