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INTRODUCTION

Heart failure is the end-stage of many cardiovascular

diseases—such as acute myocardial infarction—and remains one

of the most appealing challenges for regenerative medicine

because of its high incidence and prevalence.1,2 Patients with

progressive cardiac dysfunction show a high risk of sudden death

and, despite substantial advances in recent years, cardiac function

is only fully reestablished after heart transplantation (although its

use is limited by the scarcity of donors and the possibility of

complications). Acute myocardial infarction occurs when the

blood supply to the heart is interrupted, causing irreversible

myocardial ischemia, loss of cardiac muscle cells (cardiomyo-

cytes), and formation of a noncontractile scar.3 Consequently,

there is a need to develop therapeutic strategies that can promote

rapid reconstruction of the affected tissue and efficient renewal of

its contractile capacity.

Over the last 20 years, cardiac cell therapy (cardiomyoplasty),

based on the isolated administration of cells with regenerative

capacity, has been the focal point of studies seeking to regenerate
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A B S T R A C T

Heart failure is the end-stage of many cardiovascular diseases—such as acute myocardial infarction—and

remains one of the most appealing challenges for regenerative medicine because of its high incidence

and prevalence. Over the last 20 years, cardiomyoplasty, based on the isolated administration of cells

with regenerative capacity, has been the focal point of most studies aimed at regenerating the heart.

Although this therapy has proved feasible in the clinical setting, the degree of infarcted myocardium

regenerated and of improved cardiac function are at best modest. Hence, tissue engineering has emerged

as a novel technology using cells with regenerative capacity, biological and/or synthetic materials,

growth, proangiogenic and differentiation factors, and online registry systems, to induce the

regeneration of whole organs or locally damaged tissue. The next step, seen recently in pioneering

animal studies, is de novo generation of bioartificial hearts by decellularization and preservation of

supporting structures for their subsequent repopulation with new contractile, vascular muscle tissue.

Ultimately, this new approach would entail transplantation of the ‘‘rebuilt’’ heart, reestablishing cardiac

function in the recipient.

� 2012 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L. All rights reserved.
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R E S U M E N

La insuficiencia cardiaca es la etapa final de muchas enfermedades cardiovasculares, como el infarto

agudo de miocardio, y sigue siendo uno de los retos más atractivos para la medicina regenerativa

debido a su alta incidencia y prevalencia. A lo largo de los últimos 20 años, la cardiomioplastia, basada en

la administración aislada de células con capacidad regenerativa, ha focalizado la mayorı́a de estudios que

han perseguido regenerar el corazón. No obstante, aunque esta terapia se ha mostrado factible en el

ámbito clı́nico, el grado de regeneración del miocardio infartado y de mejorı́a de la función cardiaca es

muy limitado. Ante tal escenario ha emergido la ingenierı́a tisular cardiaca como una novedosa

tecnologı́a basada en el uso de células con capacidad regenerativa, materiales biológicos y/o sintéticos,

factores de crecimiento, diferenciación y proangiogénicos, y sistemas de registro online para inducir la

regeneración de un órgano o tejido dañado. Un paso más, según algunos estudios pioneros realizados en

animales, consiste en la generación de corazones bioartificiales de novo descelularizándolos y

preservando sus estructuras de soporte para posteriormente repoblarlos con nuevo tejido muscular

contráctil y vascular. Este nuevo abordaje comportarı́a, finalmente, el trasplante del corazón

«reconstruido» restableciendo la función cardiaca del receptor.
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the heart.4–7 The results of clinical trials have shown that the

procedure is safe, although the benefits in terms of increased

ejection fraction are modest. At the time of writing, several studies

are trying to confirm the clinical benefit of cell therapy.

Attention has recently focused on new procedures based on

combining cells with regenerative capacity, proangiogenic growth

factors, biological matrices, biocompatible synthetic polymers and

online registry systems that use bioimplants. Together, these

advanced techniques are known as tissue engineering.8–12 One

step further, proposed in pioneering studies in animal models,

would be to generate de novo bioartificial hearts, decellularizing

them and preserving the construct structure to repopulate them

with new contractile, vascular, muscle tissue.13 This novel approach

would ultimately lead to transplantation of the ‘‘reconstructed’’

heart to reestablish cardiac function in the recipient.

The present update analyzes the status of tissue engineering

and its advantages and disadvantages. An overview of these

techniques suggests a highly promising future in the struggle to

recover the dysfunctional myocardium.

CELLULAR CARDIOMYOPLASTY

Cardiomyoplasty aims to restore the damaged myocardium

through isolated implantation of cardiomyogenic and/or angio-

genic stem cells in the dysfunctional ventricle.5 The key issues

surrounding this therapeutic strategy are the choice of cell type

and the most appropriate route of delivery.

Cells With Cardiac Regeneration Potential

An ideal source of cells would: a) expand in vitro on a large

scale; b) integrate with damaged tissue, and c) differentiate into

new cardiomyocytes electromechanically coupled with the host

tissue (Table).

In this context, adult stem cells have been obtained from bone

marrow, adipose tissue, skeletal muscle, dental pulp, peripheral

blood, amniotic fluid, and synovial fluid.14 More specifically, in the

field of cardiac regeneration, skeletal myoblasts have been

implanted because they are easily isolated, have a high rate of

proliferation and are hypoxia-resistant.15,16 Similarly, different cell

populations residing in bone marrow have been tested because of

their great plasticity toward cells of cardiogenic and endothelial

lineage17: endothelial progenitor cells,18,19 hematopoietic stem cells4

and mesenchymal stem cells.20 As an alternative source of

mesenchymal stem cells, subcutaneous adipose tissue enables

us to obtain a large number of cells,21 which have been applied in

clinical trials with attractive results.22 Moreover, progenitor cells

with high cardiomyogenic and vasculogenic potential have been

identified in the adipose tissue surrounding the heart. Implanting

these cells improves heart function and reduces infarction size in

murine and rat models.7

It was long thought that mammal hearts lacked any self-

regenerating capacity. This view has been discounted, partly due to

the discovery of cardiac stem cells, residing in the heart, which are

self-replicating and capable of generating cardiomyocytes,

endothelial cells and cardiac fibroblasts.23,24 These cells have

been identified and isolated using the Sca-1, c-kit, ABCG2 and Islet-

1 markers23–25 and from the formation of cardiospheres from

myocardial explantations.26 These findings have given rise to

strategies based on activating these cells with growth factors that

favor their survival and cellular migration.26,27 However, several

studies have shown that cardiac stem cells implanted in animal

models of myocardial infarction fuse with the cardiomyocytes of

the recipient.23,28

As an alternative, embryonic stem cells have been tested because

of their strong capacity for expansion and subsequent differentia-

tion into cardiomyocytes, endothelial cells and cardiac fibro-

blasts.29,30 To avoid using this type of nonautologous cell and the

consequent need for immunosuppression therapy, induced plur-

ipotent stem cells have been developed from somatic human

Table

Advantages and Disadvantages of Implanted Cells

Cell type Advantages Disadvantages

Skeletal myoblasts Easily isolated

High rate of proliferation

Hypoxia-resistant

Autologous

High incidence of arrhythmias

Bone marrow-derived stem cells

Endothelial progenitor cells

Hematopoietic stem cells

Mesenchymal stem cells

Autologous

Easily isolated

Multipotent

Low immune response

Limited availability

Cases of bone or cartilage formation in the myocardium

Adipose tissue-derived stem cells Easily isolated

High availability

Multipotent

Low immune response

Low survival

Cardiac stem cells Multipotent

Autologous

Limited availability

Embryonic stem cells Pluripotent

Easy to expand

Teratogenic

Limited availability

Host immune response

Ethical problems

iPSC Pluripotent

Easy to expand

Good availability

Autologous

Potentially teratogenic

Possible oncogenic potential

Fetal cardiomyocytes Cardiomyocyte phenotype Limited availability

Low survival

Host immune response

Ethical problems

iPSC, induced pluripotent stem cells.
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tissue.31,32 Like embryonic stem cells, induced pluripotent stem

cells have limited replication and ample capacity for differentia-

tion. Cardiomyocytes of fetal origin are another cell type that has

been used. These cells are capable of surviving, proliferating and

forming intercalary discs with host myocardial tissue.33–35

Routes of Cell Delivery

Another decisive issue in optimizing cardiomyoplasty is the

route of cell delivery. Intramyocardial injection has been tested

using the epicardial approach via sternotomy,36 the endomyocar-

dial route,37 and the intracoronary route.38 The intracoronary route

is widely recommended as it offers higher indices of intramyo-

cardial cellular retention39,40; however, this retention does not

exceed 10% and most cells delivered nest in other organs or die.41

Independently of the route of delivery used, cardiomyoplasty has

shown modest improvements in cardiac function and limited

survival of cells implanted in the fibrous myocardium.

Limitations

Studies in animal models based on the above-mentioned use of

cells and routes of delivery indicate that cardiomyoplasty is

a feasible, safe and beneficial technique. Nonetheless, although a

viable therapy in the clinical setting, the extent to which infarcted

myocardium is regenerated and cardiac function improved is

highly limited. Basically, cells implanted under mechanical forces

show poor survival, and recipient tissue hypoxia prevents them

from providing any therapeutic effect.42–45 Moreover, very few

cells differentiate into new cardiomyocytes and, because they lack

any electromechanical properties, the regenerated muscle tissue is

dysfunctional. For example, the high incidence of arrhythmias due

to the lack of electromechanical coupling has undermined the use

of myoblasts to treat patients with cardiac dysfunction.16,46

Furthermore, the status of indifferentiation of embryonic stem

cells generates their uncontrolled proliferation, giving rise to the

formation of teratomas,47 whereas obtaining induced pluripotent

stem cells entails using viral infections that could also promote

unwanted oncogenic activity.31,32

In light of the above, new therapeutic strategies, such as tissue

engineering, are being developed and are reviewed in detail in the

following pages.

CARDIAC TISSUE ENGINEERING: BIOPROTHESES FOR THE
MYOCARDIUM

Cardiac tissue engineering is a complex new technology based

on the use of combinations of cells with regenerative capacity,

biological and/or synthetic materials, growth factors, differentia-

tion factors and proangiogenic factors, and online registry

or monitoring systems to induce the regeneration of an organ or

damaged tissue. The principle objectives of cardiac tissue

engineering are to generate cell matrices, establish electromecha-

nical coupling, and validate stable contractile function and

functional vascularization.9

The heart has dynamic functional properties that require a

sophisticated tissue architecture with cellular components and

specialized extracellular components.48 A key characteristic

enabling the heart to activate circulation and satisfy its varied

demands during rest and exercise resides in the asymmetrical

architecture of the helicoidal myocardial band.49 Recently, the

electromechanical role of the extracellular matrix has been found

to be more significant than previously thought.50 The ideal

artificial cardiac tissue would reproduce these structural,

mechanical and electrophysiological properties to keep trans-

planted cells viable, and would stimulate vasculogenesis in the

implanted tissue itself. Therefore, the use of natural or synthetic

polymeric materials and biological matrices, applied directly on

the infarcted area or used as a construct matrix, constitutes an

alternative to cell cardiomyoplasty.

Matrix Types

The use of a matrix—not necessarily biological in origin but

biocompatible—means that the delivered cells can access a stable

support structure that facilitates the correct localization and

retention near the tissue requiring their therapeutic effect. The

structure of these matrices should fulfill certain ‘‘practical’’

requirements, such as maintaining a permanent flow of nutrients

and oxygen between the cells available in their interior and the

microenvironment surrounding them, and facilitating efficient

migration and survival within the ischemic tissue. Moreover, the

ideal matrix would be biodegradable, producing no toxic

products, so that it could finally be replaced by viable new tissue.

We will now summarize some—but inevitably not all—of

the approaches studied to date in the context of cardiac tissue

engineering (Fig. 1).

Monolayer Cell Constructs

Cells cultured in temperature-sensitive polymer plaques

facilitate the detachment of cell monolayers without the need

for enzymatic intervention.51 Once complete, this construct

adheres to the ischemic zone to favor intramyocardial implan-

tation of cell monolayers. The formation of new blood vessels

has been reported, as has functional improvement due to the

joint implantation of various monolayers of adipose tissue-

derived mesenchymal cells in a murine model of chronic

myocardial infarction.52 Moreover, the use of overlaid neonatal

cardiomyocyte monolayers has been shown to generate inter-

cellular communication that activates contractile function and

propagates signals within the construct.53 Furthermore, inter-

calation of endothelial cell monolayers favors the formation of

new vessels in the ischemic zone. Despite the benefits observed

through the use of cell monolayers, this strategy still lacks

translational character, as obtaining a construct of similar

characteristics that guarantees the same results in the human

heart is inviable.

Intramyocardial Injection of Cells in Hydrogel

Another approach is based on developing natural hydrogel

types such as MatrigelTM (laminin, type IV collagen and heparan

sulphate),54 collagen,55 or fibrin,56 in which the therapeutic cell

population is embedded for subsequent intramyocardial injection.

Although the effect of hydrogel on cellular retention has been

positive,54–56 the injection pressure needed for its delivery is too

great and causes high cell mortality, which notably diminishes its

possible therapeutic effect. Similarly, the use of hydrogels made

from natural materials entails having little control over their

physiochemical properties and degradation. Moreover, hydrogels

are difficult to sterilize and purify.57 As an alternative, synthetic

hydrogels have been developed, such as polyethylene glycol,

polylactic acid, polylactic acid-co-glycolic acid, polycaprolactone,

polyacrilamide and polyurethane, which minimize these disad-

vantages.58 However, their cytotoxic potential is still being

studied and the US Food and Drug Administration has only

approved the use of polyethylene glycol, polylactic acid and
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polylactic acid-co-glycolic acid for clinical application. It has also

been shown that matrix metalloproteinase-sensitive polyethylene

glycol enables us to modulate the elasticity, biophysical and

biochemical parameters involved in cardiomyogenic differentia-

tion of implanted cells.59 An alternative method is to use hybrid

natural/synthetic hydrogels that provide the advantages of both

polymer types.58

Ex Vivo Formation of Hydrogel Cell Tissue

To counter the disadvantages of intramyocardial hydrogel

injections, an alternative based on the ex vivo creation of new

tissue from cells with cardiovascular potential previously incor-

porated into hydrogel has been studied. Two recent studies report

the in vitro contractile capacity of constructs composed of

embryonic cardiomyocytes10 or neonatal rat cardiomyocytes.11

This strategy creates a 3-dimensional environment favoring

intercellular communication and preventing anoikis60 (cell death

due to the absence of intercellular communication) and enabling

the cell constructs themselves to form an extracellular matrix.61

However, to validate optimal tissue development, these new

constructs should clearly be submitted to mechanostimulation—

otherwise the cardiomyocytes tend to die.62

Artificial Cardiac Tissue

The microenvironment in which regenerative cells reside is

decisive in maintaining their basic properties and function. In

fact, microarray studies have confirmed that communication

between cells depends, to a large extent, on their interactions

with components of the extracellular matrix where they reside.63

Consequently, cardiac tissue engineering favors new alternative

approaches based on the formation of functional 3-dimensional

artificial cardiac tissue. For example, matrices have been devel-

oped with physiochemical properties very like the physiological

extracellular matrix but based on natural materials, such as

alginate64 or mixtures of collagen,10 or synthetic materials, such

as polylactic acid65 or polyglycolic acid.66 The principle advantage

is that these materials are highly malleable, which allow their form

and size to be varied according to the needs of the individual

recipient. The MAGNUM (Myocardial Assistance by Grafting a New

Bioartificial Upgraded Myocardium) clinical trial used a type I

collagen matrix large enough to completely cover the myocardial

scar. MAGNUM compared isolated cardiomyoplasty with a

combination of cardiomyoplasty and tissue engineering and

concluded that this new alternative offers better results in

terms of functional recovery and ventricular remodeling.67 The

Monolayer cell consturcts

Intramyocardial injection

of cells in hydrogel

Artificial cardiac tissue

Extracellular matrix

of natural tissues

Ex vivo tissue

in hydrogel

Figure 1. Cardiac tissue engineering. Drawing outlining the different approaches taken in the field of cardiac tissue engineering.
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artificial cardiac tissue tested, however, does not match the

extracellular cardiac matrix perfectly and the implanted cells only

colonize the surface or a depth of up to a few micrometers.61 A

European consortium (RECATABI, REgeneration of CArdiac Tissue

Assisted by Bioactive Implants)68 has recently been created to

develop a cardiac bioengineering platform to combine innovative

biomaterials (an elastomeric skeleton and hydrogel-PuraMatrixTM)

that will improve the delivery, survival and proliferation of

implanted cells. The preliminary results show a certain degree

of cardiomyogenic differentiation of implanted cells and vascular

connections between constructs and the adjacent myocardium.

Extracellular Matrix Derived From Natural Tissues

The extracellular matrix is composed of functional and structural

proteins such as collagen, elastin, laminin, fibronectin, proteogly-

cans and many other glycoproteins, combined and spatially

organized by tissue type.69,70 This matrix is known to participate

in many processes and cellular responses including proliferation,

differentiation and migration.71These properties make it potentially

attractive as a support structure in cardiac tissue engineering

techniques to implant regenerative cells that substitute the

damaged myocardium. Moreover, the implanted extracellular

matrix may be capable of substituting that of the damaged tissue,

efficiently contributing to its regeneration. Extracellular matrix

lamina have been successfully isolated from a variety of tissues

including native cardiac valves,72–74 blood vessels,75,76 skin,77

nerves,78 skeletal muscle,79 tendons,80 ligaments,81 small intestinal

submucosa,82 urinary bladder,83 and liver.84

To apply these lamina correctly, they should be separated from

native tissue, decellularized and, often, disinfected, freeze-dried

and sterilized.85 Clearly, this complex process could affect matrix

integrity and architecture. The use of animal—particularly

porcine—tissue as a source resolves the critical scarcity of human

tissue for surgical applications.86

The ideal decellularization protocol for matrices is one that can

selectively eliminate allogenic and xenogenic antigens, as well as

all tissue cell and nuclear content while preserving its composition,

physiological properties, the mechanical integrity of the extra-

cellular matrix, and the vascular structure.87,88 This process

combines specific physical, chemical and enzymatic treatments

according to tissue type.79,83,89,90

Many studies have shown that implanting the extracellular

matrix facilitates tissue remodeling in animal models and in the

clinical context.83,89,91–97 Experimentally, colonization of extra-

cellular matrices implanted by cells of both cardiomyogenic and

endothelial lineage, thus avoiding ventricular remodeling, has

been reported in animal models.98–101 In extracellular matrices of

cardiac origin, the results suggest improved heart function with

the cardiomyocytes present in the region of the implant.102 Recent

publications have shown that using extracellular myocardial

matrices and preserving their 3-dimensional architecture is a

key alternative to facilitate the support and cellular differentiation

needed to favor cardiac regeneration.13,103–109

Electromechanical Cellular Coupling and Contractile Function

In physiological conditions, mechanical stretching of cardio-

myocytes is induced by electric cardiac signals and coupling

between the electric pulse and cellular contractions, and is critical

in developing the myocardium.14 Therefore, it is vitally important

that cardiac tissue engineering techniques guarantee electrome-

chanical cellular coupling and adequate contractile function within

the constructs generated. To this end, structures have been

designed with collagen and MatrigelTM in the form of an annulus

colonized by neonatal rat cardiomyocytes and subjected to

mechanical stimulation.10 After implantation into the ischemic

rat myocardium, these annular structures remain autonomously

contractile and are responsible for the increased thickness of the

infarcted ventricle wall and improved heart function. Another

approach is based on inducing synchronized contractions in the

cellular matrix through electric stimulation.110,111 As a result,

electric pulses give rise to substantial ultrastructural organization

and cellular coupling of cardiomyocytes residing in the matrix. To

balance this effect, these constructs contain allogenic cardiomyo-

cytes and are too small for clinical application.

A study was recently started in a porcine model of acute

myocardial infarction based on implanting a bioactive matrix with

an online monitoring system. Using electric impedance, this model

allows the progress of cardiac scarring to be determined in situ and

the electrical changes due to this process to be assessed.112,113 This

new approach will, in the future, enable noninvasive assessment of

the functional improvements occurring after cell delivery through

cardiac tissue engineering.

Functional Vascularization

One of the key objectives of cardiac tissue engineering is to

promote vascularization phenomena within the bioartificial

matrix that allow continuous diffusion of nutrients and oxygen

toward the interior of the matrix. Such phenomena could

subsequently favor the migration and incorporation of cells into

the damaged myocardium. Several means of guaranteeing this

process have been tested. For example, growth factors such as

vascular endothelial growth factor114 or basic fibroblast growth

factor115 have been included as part of the construct to stimulate

vascular structure formation from the mesenchymal stem cells116

and/or endothelial progenitor cells117 of the construct, or

mobilizing cytokines have been added to incorporate the

recipient’s own endothelial progenitor cells following implanta-

tion. On the whole, this approach promotes cellular infiltration and

the formation of blood vessels with highly promising results.114–119

Other alternatives include the in vitro use of bioreactors to improve

oxygen perfusion through the implanted cells inside the previously

canalized matrix to facilitate endothelial progenitor cell migration

toward the interior of the constructs generated.14

NEO-ORGANOGENESIS: BIOARTIFICIAL HEART

The above-mentioned decellularization studies with extra-

cellular matrices provide conceptual proof that decellularized

hearts can be obtained. To date, direct immersion decellulariza-

tion processes have been sufficient to generate construct matrices

from different cardiovascular tissues, including the valve wall,120

pericardium,121,122 and valvular valves.123,124 In contrast, it has

been demonstrated that coronary perfusion with detergents is the

most efficient means of decellularizing a whole heart. In 2008,

cadaver rat hearts were successfully decellularized to obtain a

complex extracellular cardiac matrix with preserved vascular

tree, competent valves and intact atrial and ventricular geome-

try.13 These constructs are subsequently recellularized with

endothelial cells (autologous vascularization) and neonatal

cardiac cells (heterologous parenchymal recellularization) using

coronary perfusion in a bioreactor simulating the cardiac

physiology and favoring the maturation of the organ (Fig. 2).

After 8 days of physiological incubation and electrical stimulation,

macroscopic contractions were detected with a pump function

equivalent to 2% of the adult heart or 25% of the heart function of a

16-week fetus.13
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More recent studies have reported decellularization of porcine

hearts as a model that can be scaled to human proportions.105,109

One important aspect to consider in the application of whole

organs or bioartificial matrices is the need for correct vasculariza-

tion without which construct viability could be compromised. This

problem is especially critical when matrix thickness is greater than

the diffusion barrier (approximately 100 mm), where the oxygen

and nutrient supply is limited and cellular cytotoxic waste

subproducts accumulate.103,125 Decellularization of whole hearts

has led to the successful mimesis of vascularized myocardial tissue

and its repopulation with cells through the vascular structures

with a certain degree of preservation.13,105,109 Despite its success,

this strategy can be limited with respect to the technology

available for the large-scale expansion of cells—particularly

cardiomyocytes—necessary to repopulate the entire organ.103,126

Much remains to be done before a bioartificial heart is available for

use in humans. However, in Spain, a pioneering research group in

the field is developing a bioartificial heart, as first conceptual proof,

by decellularizing human hearts and subsequently recellularizing

them with human mesenchymal cells and murine cardiomyo-

cytes.127

CONCLUSIONS AND PROSPECTS FOR THE FUTURE

Although the results of the above-mentioned studies are clearly

promising and many show a noteworthy improvement in cardiac

contractile function, many issues remain to be defined. At the time

of writing, the major disadvantage of most tissue engineering

studies lies in the difficulty of extrapolating the mouse/rat animal

model to the porcine model and, consequently, the clinical context.

The size of the human heart makes these approaches inviable, both

due to matrix dimensions (10-50 cm2 and several millimeters

thick14) and the limited number of cells that can actually be

implanted.

Faced with this limitation, our research group has designed a new

surgical technique based on transposing an autologous pedicle

of pericardial origin onto the ischemic myocardial surface. This

new proposal offers highly promising results in a preclinical

porcine model of myocardial infarction given that the fatty pedicle

establishes vascular connections in the infarcted myocardium128,129

and consequently guarantees improved cardiac function in terms of

ejection fraction and cardiac volumes.128 Currently, we are

prospectively enrolling and randomizing patients (Clinicaltrials.gov

NCT01473433) to determine the safety and effectiveness of this

new surgical approach.130 In the clinical context, few trials have

been based on the application of cardiac tissue engineering.

Two current clinical trials are investigating the intramyocardial

injection of alginate (NCT01311791) or intracoronary administra-

tion of sodium alginate combined with calcium gluconate

(NCT01226563) in order to generate a new extracellular matrix in

the myocardium for the resident cardiac progenitors to migrate and

repopulate the cardiac scar.

Despite numerous advances in cardiac tissue engineering, many

questions remain hidden, which are crucial to the complete

reestablishment of cardiac function and ischemic myocardium

vascularization. Firstly, the key is to determine which cell type

(adult cells, embryonic cells, or induced pluripotent stem cells;

autologous or heterologous) is best-suited to obtaining tissue

regeneration. Secondly, we need to define which matrices (natural

or synthetic hydrogels, collagen, polylactic acid, polylactic acid-co-

glycolic acid, extracellular matrix) are best able to nest the cell

population and favor its retention and proliferation. Thirdly, the

existence of electromechanical cell coupling within the matrix and

the construct with the tissue under repair is fundamental to

restoring heart function. Finally, vascularization of the construct

Physical, chemical and enzyme

treatment

Decellularization Recellularization Functional heart

Autologous

vascularization

Heterologous

parenchymal

vascularization

Figure 2. Neo-organogenesis: bioartificial heart. Schematic representation of the different stages in the decellularization and recellularization of a heart. Initially,

physical, chemical and enzymatic decellularization is intended to preserve the extracellular cardiac matrix and vascular tree. Next, autologous vascularization is

induced followed by heterologous parenchymal recellularization in order to finally generate a new functional heart.
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will determine its own viability and integration with the recipient

tissue, in addition to becoming the blood supply required to

reverse the myocardial ischemia.

FUNDING

Red de Terapia Celular - TerCel (RD12/0019/0029), Red Cardio-

vascular (RD12/0042/0047), European Comission 7th Framework

Programme (RECATABI, NMP3-SL-2009-229239), Ministerio de

Educación y Ciencia (SAF2011-30067-C02-01), and Fundació Marató
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