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INTRODUCTION

In recent years, the field of electrophysiology has expanded

rapidly, with an increase in the complexity and number of

techniques performed. This would not have been possible without

the parallel development of noninvasive cardiovascular imaging

techniques that allow the precise study of cardiac anatomy and

complex cardiac function. Cardiac imaging techniques allow better

patient selection and individualized planning of procedures, help

guide the performance of procedures by detecting potential

complications early, and lastly, assess the long-term treatment

outcomes at follow-up. This review focuses on the usefulness of

imaging techniques in some of the more complex procedures, such

as ablation of atrial fibrillation (AF), cardiac resynchronization

therapy (CRT), and ablation of ventricular tachycardias.

CARDIOVASCULAR IMAGING IN PATIENTS WITH ATRIAL
FIBRILLATION TREATED WITH ABLATION

Atrial fibrillation is the most common arrhythmia in the general

population, and its prevalence increases with age.1 The pathogen-

esis of AF usually involves an ectopic focus in the pulmonary veins.

There is also an anatomical substrate that favors the generation

and persistence of the arrhythmia, which can be detected with

imaging and essentially is identified by the presence of atrial

dilatation2 and dysfunction.3 Transthoracic echocardiography is

the first-line imaging technique used to identify this substrate and,
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A B S T R A C T

In recent years, rapid technological advances have allowed the development of new electrophysiological

procedures that would not have been possible without the parallel development of imaging techniques

used to plan and guide these procedures and monitor their outcomes. Ablation of atrial fibrillation is

among the interventions with the greatest need for imaging support. Echocardiography allows

the appropriate selection of patients and the detection of thrombi that would contraindicate the

intervention; cardiac magnetic resonance imaging and computed tomography are also essential in

planning this procedure, by allowing a detailed anatomical study of the pulmonary veins. In addition,

in cardiac resynchronization therapy, echocardiography plays a central role in both patient selection and,

later, in device adjustment and in assessing the effectiveness of the technique. More recently, ablation of

ventricular tachycardias has been established as a treatment option; this would not be possible without

planning using an imaging study such as cardiac magnetic resonance imaging of myocardial scarring.

� 2016 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.
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R E S U M E N

La rápida evolución tecnológica producida en los últimos años ha permitido la aparición de nuevos

procedimientos en electrofisiologı́a que no habrı́an sido posibles sin el desarrollo en paralelo de las

técnicas de imagen que sirven para planificar, guiar y monitorizar el resultado posterior de dichos

procedimientos. Entre las intervenciones con mayor necesidad de apoyo con técnicas de imagen, se

encuentra la ablación de la fibrilación auricular. La ecocardiografı́a permite seleccionar a los candidatos y

detectar trombos que contraindicarı́an la intervención, y la resonancia cardiaca y la tomografı́a

computarizada son también básicos para su planificación a través del estudio detallado de la anatomı́a de

las venas pulmonares. Por otra parte, en la terapia de resincronización cardiaca la ecocardiografı́a tiene

un papel central tanto para la selección de pacientes como posteriormente para el ajuste del dispositivo y

evaluar la efectividad de la técnica. Más recientemente, la ablación de taquicardias ventriculares se ha

consolidado como una alternativa de tratamiento que no habrı́a sido posible sin planificarla mediante

estudio con resonancia magnética cardiaca de las cicatrices en el miocardio.
� 2016 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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therefore, to select patients who are candidates for ablation

treatment. This technique allows assessment of the presence of

associated structural heart disease (such as valvular disease, left

ventricular hypertrophy, and ventricular dysfunction). Transtho-

racic echocardiography also has therapeutic implications, as it

indicates the risk of recurrence (according to atrial size and

function4) and determines whether a combined therapeutic

approach (for example, surgical ablation and mitral repair) would

be appropriate, in cases of associated structural disease.

For estimation of the size of the left atrium (LA) 2-dimensional

(2D) echocardiography is the most widely-used technique in

clinical practice because of its availability; however, it under-

estimates LA volume compared with the 3-dimensional (3D)

techniques of 3D echocardiography and cardiac magnetic reso-

nance (CMR) imaging.5 Left atrial size (diameter and volume) has

been demonstrated to be a predictive factor for the occurrence of

idiopathic AF2 and its recurrence after cardioversion.6 Regarding

the success of AF ablation, although arterial hypertension and an

anteroposterior LA diameter of > 45 mm have been demonstrated

to be independent predictors of success,7 mean atrial

volume determined using 3D techniques (echocardiography4

and computed tomography [CT])8 has been demonstrated to

predict AF recurrence after ablation better than LA measurements

determined using conventional 2D echocardiography. Another

recently introduced parameter is the sphericity index as measured

on CMR9: spherical remodeling of the LA increases the risk of AF

recurrence and is a better discriminator than atrial size.

Left atrial function can be divided into 3 phases (reservoir,

conduit, and booster pump) that can be studied using echocardi-

ography with either volumetric measurements (2D or 3D) or

myocardial deformation imaging (strain and strain rate)10

(Figure 1). A reduction in either the reservoir function4,11 or the

contractile, or booster pump, function12 of the LA has been

associated with AF occurrence and with successful ablation. Study

of LA function can identify those patients whose arrhythmia will be

stopped by ablation, both in patients with AF treated with a first

ablation and in those treated with a second procedure.13

Delayed-enhancement CMR is attracting increasing interest for

the detection of atrial fibrosis, which is considered an indicator of

the arrhythmogenic substrate of AF. A prospective multicenter

study (the DECAAF study)14 showed an association between the

degree of fibrosis and AF recurrence after ablation. Patients were

classified according to the degree of fibrosis (Utah stage), and

recurrence was significantly associated with the initial degree of

fibrosis (stage I, 15.3%; stage II, 32.6%; stage III, 45.9%; stage IV,

51.1%). Fibrosis detection using CMR could be useful for stratifying

the risk of AF occurrence or AF recurrence after ablation.15

However, there are some technical limitations in terms of

standardization: CMR has a limited spatial resolution, and the

atrial wall is very thin; in addition, good atrial wall segmentation is

needed, and currently there are various algorithms that use

different thresholds of signal intensity to define fibrosis.16

Imaging also allows the detection of potential complications

that would contraindicate the technique. The detection of a

thrombus in the left atrial appendage using transesophageal

echocardiography is one of the most well-known contraindications
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AF: atrial fibrillation

CMR: cardiac magnetic resonance

CRT: cardiac resynchronization therapy

CT: computed tomography

LA: left atrium

LV: left ventricle

VT: ventricular tachycardia
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Figure 1. Study of left atrial function using myocardial deformation derived from 2-dimensional echocardiography (speckle-tracking strain). A: left atrial strlain

(a, patient with normal left atrial strain; b, patient with decreased left atrial strain). B: left atrial strain rate (a, patient with normal left atrial strain rate; b, patient

with decreased left atrial strain rate). S, global left atrial strain; SRa, strain rate during atrial contraction (contractile function); SRe, strain rate during the early

ventricular filling phase (conduction function); SRs, strain rate during ventricular systole (reservoir function).

L. Sanchis et al. / Rev Esp Cardiol. 2016;69(6):595–605596



for the procedure (Figure 2). There are various risk factors for

thrombosis, such as female sex, the presence of structural heart

disease, LA dilatation, and persistent AF: the presence of these

factors increases, in an additive manner, the risk of left atrial

appendage thrombus.17 Similarly, the CHADS2 (congestive heart

failure, hypertension, age, diabetes, stroke [doubled]) score is

directly proportional to the probability of thrombus presence.18

The need to perform transesophageal echocardiography in patients

without risk factors is under debate. In up to 24% of patients with a

CHADS2 score of 0, spontaneous contrast was detected in the left

atrial appendage: this is indicative of blood stasis and is considered

equivalent to an intra-atrial thrombus.18 Therefore, performing

transesophageal echocardiography prior to ablation increases the

safety of the procedure. The left atrial appendage can also be seen

noninvasively using CT with contrast focused on the LA: several

studies support the diagnostic accuracy of this method in the

detection of thrombi.19 Thus, in patients who cannot tolerate or

have a contraindication for transesophageal echocardiography, CT

can be a good alternative.

Intraprocedural Guidance

When ablation is indicated, imaging allows the procedure to be

planned. In the case of AF ablation, information on the anatomy of

the pulmonary veins is of particular interest.20 Although the

anatomy can be studied with transesophageal echocardiography,

the higher resolution and 3D visualization of CT and CMR mean

that these techniques are routinely performed in most centers

before the procedure, especially to obtain image fusion with

electroanatomical navigation systems. This allows faster and

simpler radiofrequency application. In addition, such imaging

provides information on the presence of anatomical variants, such

as a right middle pulmonary vein or a left common trunk, that

could be associated with an increased recurrence of AF.21,22

In some centers, intracardiac echocardiography guidance is

used during the procedure,23 serving as a useful guide

for transseptal puncture and catheter position, and providing

information on the anatomy. However, its use increases the

complexity and cost of the procedure.

Despite such guidance, AF ablation is not without risk. Cardiac

tamponade, which can occur in up to 5% of interventions,24 can be

rapidly diagnosed with echocardiography.

Follow-up (Effect of Treatment)

Atrial function shows long-term changes after AF ablation, and

reduction of atrial volume can be seen on 3D echocardiography,25

CMR,26 and CT27 studies. In a meta-analysis,28 LA dimensions were

found to decrease significantly after ablation only in patients

without arrhythmia recurrence; in contrast, atrial function

measured as LA ejection fraction or LA active emptying fraction

did not change in patients without recurrence, but did decrease in

patients with AF recurrence. Various studies summarized in the

meta-analysis showed that the scarring and LA volumetric

retraction caused by the damage produced during ablation were

counteracted by the beneficial effect of restored sinus rhythm.

Thus, in patients with or without effective ablation (in terms of

restoration of sinus rhythm), even if LA volume is reduced, LA

function does not worsen or improves only in patients who remain

in sinus rhythm.28

In patients with AF recurrence, gaps in ablation lines are one of

the main mechanisms of pulmonary vein reconnection. Delayed-

enhancement CMR can locate these gaps and guide the second

ablation procedure29 (Figure 3).

In the long term, one of the most significant complications of AF

ablation is pulmonary vein stenosis, which can occur in up to one

third of cases,30 particularly in the left pulmonary vein (incidence

of severe stenosis of up to 1%30,31). To confirm the diagnosis,

the technique of choice is CT, although CMR provides the same

information without radiation or iodinated contrast. Older

patients, those with larger veins, and those with left inferior veins

have a higher probability of pulmonary vein stenosis.30

Table 1 summarizes the main uses of cardiac imaging in AF

ablation.
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Figure 2. Transesophageal echocardiographic imaging in 2 study planes of 608 and 1508 showing a thrombus (arrow) in the left atrial appendage. LA, left atrium;

LAA, left atrial appendage; LV, left ventricle; MV, mitral valve.
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CARDIOVASCULAR IMAGING IN CARDIAC RESYNCHRONIZATION

The lack of coordination of cardiac mechanics secondary to the

presence of electrical dyssynchrony has a deleterious effect on

cardiac function. This is due to reduced filling and ejection times,

with inefficient ventricular and atrial contraction, the develop-

ment of mitral regurgitation, and increased left ventricle (LV)

filling pressures.32 Cardiac resynchronization therapy aims to

correct these mechanisms (correction of mechanical dyssyn-

chrony) by electrical stimulation that stops and can even reverse

the adverse remodeling caused by them. As a consequence, a

significant improvement has been demonstrated in quality of life,

number of hospital admissions, and mortality in patients with

heart failure and left ventricular dysfunction treated with CRT.33

Response to CRT is determined by multiple factors, which can be

summarized as the presence of an electrically-correctable me-

chanical discoordination along with a myocardium that is able to

respond (with contractile reserve).34

Selection of Candidates

Electrically-correctable mechanical dyssynchrony includes

various clinical situations that can be identified using echocardi-

ography. Of interatrial,35 atrioventricular,36 interventricular, and

intraventricular32 dyssynchrony, the last 3 can be improved by CRT

with the implantation of a triple-chamber pacemaker, and there is

already some initial experience with biatrial pacing for correction

of interatrial dyssynchrony.37

According to the latest European guidelines,38 CRT is indicated

for patients who, despite optimal medical treatment, remain in at

least New York Heart Association functional class II, with left

bundle branch block and QRS > 120 ms on electrocardiogram, and

left ventricular ejection fraction � 35%.39 Therefore, as a basic

prerequisite for implantation, imaging is needed to determine left

ventricular ejection fraction: this is usually 2D echocardiography.

Figure 3. A: 3-dimensional delayed-enhancement cardiac magnetic resonance imaging of the left atrium in a patient with previous ablation. B: the epicardial and

endocardial borders are traced for left atrial segmentation. In this case, based on the enhancement signal intensity normalized by the blood signal intensity, an

image intensity ratio is obtained, and fibrous tissue is detected and quantified. C: 3-dimensional volume rendering image from segmentation of the left atrium in

which fibrous tissue is projected onto the surface of the model; area with scar (in red), and area of discontinuity, the anatomical gap (arrow) that will act as a guide

for catheter ablation.

Table 1

Usefulness of Imaging Techniques in Ablation of Atrial Fibrillation

Candidate selection

Clinical assessment Underlying heart disease (echocardiography,

CT, CMR)

Prediction of success Left atrial size

– 2D echocardiography7

– 3D echocardiography4

– CT8

– CMR5

Left atrial function

– 3D echocardiography4

– Speckle-tracking strain13

Left atrial fibrosis

– CMR14

Left atrial geometry

– Sphericity on CMR9

Contraindications Thrombus in left atrial appendage

– Transesophageal echocardiograpy18

– CT19

Ablation guidance

Anatomy CT22, CMR21, intracardiac echocardiography23

Complications During the procedure

– 2D echocardiography

Follow-up

Effect of treatment Reduction in left atrial volume

– Echocardiography25

– CT27

– CMR26

Improved left atrial function

– CMR26

Complications Long-term (pulmonary stenosis)

– CMR31

2D, 2-dimensional; 3D, 3-dimensional; CMR, cardiac magnetic resonance; CT,

computed tomography.
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Although the indication for CRT is based on these criteria, up to 30%

to 45% of patients do not respond to this therapy.40 Therefore, the

aim has been to select patients with a more favorable profile for

CRT by using imaging techniques, particularly echocardiography.

Atrioventricular dyssynchrony can be studied using transmitral

pulsed Doppler duration (LV filling time) compared with the total

duration of the cardiac cycle: if < 40%, it is considered atrioven-

tricular dyssynchrony. For interventricular dyssynchrony, pulsed

Doppler of the ventricular outflow tracts allows measurement of

the pre-ejection period (time from the start of the QRS to the onset

of ventricular ejection). A difference of > 40 ms between the right

and left ventricular times or an LV pre-ejection period of > 140 ms

is considered indicative of interventricular dyssynchrony.41

Left intraventricular dyssynchrony is the most widely-studied

type of dyssynchrony, and a multitude of factors have been

proposed for its evaluation. M-mode echocardiography of the LV

(parasternal long axis view)42 is the simplest way to analyze it

(Pitzalis method). A difference of � 130 ms between the maximal

septal wall contraction and maximal posterior wall contraction is a

predictor of reduced end-diastolic diameter following CRT.43

However, this is of limited use in the presence of segmental wall

motion abnormalities (eg, in ischemic heart disease), and there is a

high degree of variability in its interpretation.44 Tissue Doppler

allows determination of the peak myocardial velocity of contra-

lateral segments during the ejection phase (between the opening

and closing of the aortic valve).45 This requires correct alignment

with the ultrasound beam (an angle-dependent technique) and

good temporal resolution. A difference of � 65 ms between the

peak myocardial velocities of the basal segments of the septal and

lateral walls of the LV on an apical 4-chamber view (Figure 4) has

been associated with response to CRT,46 according to the

experience of some authors, although the method is controversial.

Similarly, the Yu index47 analyzes the 12 myocardial segments

studied from apical 2-chamber, 3-chamber, and 4-chamber views.

Lastly, the time difference between the myocardial deformation

peaks determined using 2D echocardiography (speckle-tracking

strain) has also been shown to be useful in predicting response to

CRT. Radial strain appears to be superior to longitudinal or

circumferential strain in predicting response48; a difference

of � 130 ms between the peak deformation of the LV septal wall

and that of the posterior wall is predictive of LV reverse remodeling

after CRT49 (Figure 5). The combination of pulsed tissue Doppler

with radial strain determined by speckle-tracking could increase

the predictive capacity.50 Speckle-tracking strain could also be

useful to determine the segment with the most-delayed myocar-

dial activation: this would be the site where LV electrode

implantation would have its maximum efficiency.51 Lastly, 3D

echocardiography also allows determination of the systolic

dyssynchrony index (standard deviation of the time required by

the different LV segments to reach the minimum volume at end-

systole). This is expressed as a percentage, with a proposed cutoff

point of 9.8% for predicted response to CRT.52 A limitation of this

method is that it does not differentiate segmental contraction

abnormalities or necrotic zones from the zones that are

mechanically delayed due to an electrical disturbance and

therefore susceptible to CRT.53 Pulsed tissue Doppler can also be

used in 3D echocardiography and allows simultaneous comparison

of the velocity delays of the different LV segments.54 Speckle-

tracking strain from 3D echocardiography allows differentiation

between viable myocardium and scar,55 but it has a low temporal

resolution and therefore is not suitable for the study of such rapid

phenomena as those occurring during a cardiac cycle.

Table 2 summarizes the main echocardiographic measure-

ments proposed for the selection of CRT candidates.

The multicenter PROSPECT56 study aimed to validate these

imaging techniques for the prediction of response to CRT, but the

results were clearly negative. The parameters that had previously

been presented individually and in single centers had demonstrat-

ed prognostic value in predicting response to CRT, but this value

was not confirmed in a multicenter setting. This generated a great

deal of controversy regarding the role of echocardiography in

mechanical dyssynchrony prior to CRT implantation. The results of

the PROSPECT study were explained in part by the low

reproducibility of the measurements and the huge difficulty of

precisely defining a positive response to CRT. All the studies that

aim to demonstrate the prognostic usefulness of a determined
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Figure 4. Tissue Doppler study of left intraventricular synchrony. From the apical 4-chamber image of the left ventricle (left screens) acquired using color-coded

tissue Doppler, the imaging is postprocessed, obtaining curves of myocardial velocity throughout consecutive cardiac cycles of the basolateral segment (green line)

and the basal septal segment (yellow line) (large screen). The 2 curves are not superimposed and there is a time difference between the 2 peaks of maximum

velocity of each myocardial segment (arrow). AVC, aortic valve closure; AVO, aortic valve opening; HR, heart rate.
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parameter in predicting response to CRT use a dichotomous

variable to define the response or lack of response. However, the

clinical reality is different, given that response to CRT is variable

and ranges from clinical improvement without reverse remodeling

to extensive reverse remodeling (super-responders).57 Therefore,

the indication for CRT should not be based on a single parameter, as

cardiac function is complex, and there are multiple parameters

involved in the response to CRT.34 In addition, the methods

described above have many technical limitations and do not

always show an electrically-correctible mechanical dyssynchrony

problem (that is, they do not differentiate necrosis from

mechanical delay due to slowed electrical activation). In patients

with normal ventricular function, there is a good correlation

between the mechanical times and electrical times, but this

correlation is lost in patients with ventricular dysfunction. Cardiac

resynchronization therapy improves this correlation, but in

patients with myocardial scarring, it is not always possible to

correct the mechanical abnormalities.58 Therefore, some authors

have proposed a multimodal approach59 that includes clinical and

echocardiographic parameters. In this regard, identification of a

CRT-correctible abnormality on conventional echocardiography

has been associated with a response to CRT and improved survival.

These abnormalities, in order of predictive value, are as follows:

abnormal septal movement during isovolumetric contraction

(septal flash), ventricular filling abnormalities such as the presence

of a truncated A wave (short atrioventricular interval), fusion of A

25.0

–25.0
%

RS

25.0

AVC
MVO

T = 787 msRS (%) = 5.47

16.7 ∆t

8.3

0.0
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Figure 5. Left intraventricular synchrony study using echocardiography of myocardial deformation (strain). From the short axis image of the left ventricle at the

level of the papillary muscles obtained with 2-dimensional echocardiography (left screen), the endocardium is traced. Using dedicated software, curves of radial

myocardial deformation are obtained (positive values) for each segment of the left ventricle (6 segments) throughout the cardiac cycle (large screen). The time

difference is calculated between the maximal deformation of the septal segments (turquoise and yellow lines) and the inferolateral segment (green line). The curves

are not superimposed and there is a time difference between the peaks of maximal myocardial deformation of each myocardial segment (arrow). Dt: time

difference; AVC, aortic valve closure; MVO, mitral valve opening; RS, radial strain.

Table 2

Detection of Cardiac Resynchronization Therapy-correctable Cardiac Dyssynchrony on Echocardiography

Atrioventricular dyssynchrony

Pulsed Doppler Duration of transmitral pulsed Doppler < 40% of total cardiac cycle

Interventricular dyssynchrony

Pulsed Doppler Measurement of pre-ejection period at the level of LV and RV outflow tracts. There is dyssynchrony if there is > 40 ms

difference or if LV pre-ejection period is > 140 ms41

Intraventricular dyssynchrony

M-mode Pitzalis method. Difference between maximal septal contraction and maximal posterior contraction � 130 ms42

Tissue Doppler Apical 4-chamber view, difference between peak myocardial velocity of the basal segments of the septal and lateral LV

walls � 65 ms46

Yu index. Analysis of the 12 myocardial segments (4-chamber, 3-chamber, and 2-chamber), standard deviation � 33 ms47

Myocardial deformation

(speckle-tracking strain)

Radial strain. Difference � 130 ms between the peak deformation of the septal and posterior segments49

3D-echocardiography Standard deviation of the segments > 9.8%52

Other Pulsed tissue Doppler in 3D echocardiography54

Myocardial deformation applied to 3D echocardiography55

3D, 3-dimensional; LV, left ventricle; RV, right ventricle.
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and E waves (long atrioventricular interval) and, lastly, exaggerat-

ed interventricular dependence.60 These parameters are easily

identifiable with conventional echocardiography. Septal flash can

be identified on 2D or simple M-mode echocardiography (Figure 6)

as a rapid movement of the septum towards the ventricular cavity

during the isovolumetric contraction phase (during the QRS of the

electrocardiogram) and a rapid recoil caused by delayed active

contraction of the lateral wall. Filling abnormalities (fusion of E and

A waves or early termination of the A wave) are also easily

recognizable with pulsed Doppler of LV inflow. Lastly, exaggerated

ventricular interaction can be identified by either 2D echocardi-

ography or by a difference in the pre-ejection periods of the right

ventricle and the LV. By following an algorithm to determine these

parameters, the probability of response to CRT can be determined

based on the presence of an electrically-correctable mechanical

abnormality. Furthermore, the extent or degree of response will be

determined by the baseline status of underlying heart disease and

other clinical factors such as kidney disease.60 Although there is

increasing evidence that in experienced hands an integrated

approach to the patient with a wide QRS and ventricular

dysfunction can improve the response rate to CRT, the guidelines38,39

still suggest QRS width alone as the criterion for CRT indication.

Cardiac magnetic resonance imaging provides information on

LV size and function and the presence of myocardial scarring in

patients who are candidates for CRT. It can also provide

information on LV dyssynchrony. Using the cine sequence, and

from radial shortening analysis of wall segments, polar maps are

created, and the tissue synchronization index can be calculated.61

Cardiac magnetic resonance also allows myocardial deformation

analysis by monitoring specific marks in the myocardium

(tagging).62 With both techniques, some authors have demon-

strated that response to CRT can be predicted.61,62 The use of

velocity-encoded CMR has also been described for the study of

dyssynchrony, measuring myocardial wall motion throughout the

cardiac cycle. This provides velocity-time curves similar to those of

tissue Doppler imaging,63 but there are still no data that prove the

usefulness of this method in predicting long-term response to CRT.

Use of CMR in the study of cardiac synchrony is limited by both the

complex processing of the images and the low temporal resolution.

However, delayed-enhancement CMR provides important infor-

mation on the presence, location, and transmurality of scarring, all

of which are independent predictors of CRT response. Total scar

burden appears to be an independent predictor of response to CRT;

although there is no consensus on the cutoff value that would

contraindicate this treatment, it ranges between 10% and 15%.64

Regarding the transmurality (presence of late enhancement > 51%

of wall thickness), there is a demonstrated inversely proportional

relationship with response to CRT.65 Finally, location of the scar on

the posterolateral wall, particularly if it is transmural, is associated

with a lesser response to CRT.66 The presence, size, and

heterogeneity of the scar as evaluated with CMR also predict

the incidence of ventricular arrhythmias in patients with CRT,

therefore CMR could be useful when deciding whether or not to

combine the CRT device with a defibrillator function.67

Computed tomography is a noninvasive alternative to

venography that is usually performed at the same time as the

procedure to evaluate the anatomy of the cardiac veins with a

view to implanting the electrode in the LV. Computed tomogra-

phy imaging allows the clinician to see if the veins are suitable

for electrode implantation and to plan the intervention

appropriately.68

Nuclear medicine techniques also allow determination of LV

systolic function, the presence of scars, and the degree of

mechanical dyssynchrony,69 as well as the most-delayed activa-

tion point, to guide the implantation of the LV electrode.70

However, these techniques have low spatial resolution and involve

radiation and complex processing; therefore, they are rarely used

in clinical practice.

DEVICE OPTIMIZATION

Optimization of the atrioventricular and interventricular

intervals can be useful for some patients who do not respond to

CRT, although routine optimization is not recommended.38 The

most frequently-used method for atrioventricular interval opti-

mization is the iterative method. Using pulsed Doppler of LV filling,

the diastolic filling time is calculated, from the start of the E wave

until the end of the A wave; a long interval is programmed, which is

then gradually reduced until the truncated A wave appears; then

the interval is gradually increased until the truncated A wave

disappears: this is considered the optimal interval (Figure 7). An

empirical method is also used for interventricular interval

optimization, which looks for the VV interval providing the

greatest LV outflow tract velocity-time integral as an indicator of

stroke volume.71 The interval between the 2 ventricles can also be

optimized by identifying which produces the greatest synchrony,

using tissue Doppler applied to opposite walls of the LV. Both

optimization methods correlate well and improve cardiac out-

put.72 The optimization of CRT devices leads to clinical improve-

ment in patients treated with CRT,73 although its impact on

survival has not yet been demonstrated.

Follow-up

In the follow-up of patients treated with CRT, echocardiography

is the most frequently-used imaging technique, since, due to the

implantation of the CRT device, CMR use is restricted. The reverse

cardiac remodeling that is seen at follow-up in patients who

respond to CRT is significantly associated with clinical improve-

ment and fewer clinical events at follow-up.33 On conventional

(2D) echocardiography, CRT has been demonstrated to reduce LV

volume and improve the systolic74 and diastolic57 function of both

ventricles.75 Likewise, CRT can improve mitral regurgitation, due

to the acute improvement in synchronous papillary muscle

contraction and the long-term improvement of ventricular reverse

remodelling76 (Figure 8).
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CARDIOVASCULAR IMAGING IN PATIENTS WITH VENTRICULAR
TACHYCARDIA

In some patients with recurrent sustained ventricular tachy-

cardia (VT) despite medical treatment, ablation of VT has become a

therapeutic option that improves patients’ symptoms and

prognosis.77 Cardiac imaging also helps optimize the outcomes

of this treatment.

Candidate Selection

In the assessment of patients with VT, it is important to

distinguish between those with a structurally normal heart and

those with myocardial disease (to establish if there is scarring or

fibrosis), as this is associated with more poorly-tolerated VT and VT

leading to ventricular fibrillation. The first approach is with

conventional echocardiography, but in recent years, several

studies have focused on the use of delayed-enhancement CMR

to identify the necrotic/fibrotic zone, stratify VT risk, plan ablation

procedures, and guide the procedure.78

It is important to identify the origin of the VT prior to ablation.

The presence of an area of necrosis/fibrosis with surrounding areas

of viable tissue is the basis for the formation of VT re-entry

circuits.79 Delayed-enhancement CMR has become the technique

of choice for identifying and characterizing such necrotic/fibrotic

tissue. The presence and, above all, the degree of heterogeneity of

the scar as studied on delayed-enhancement CMR are associated

with an increased incidence of ventricular arrhythmias and poor

prognosis both in patients with myocardial infarction and in those

with nonischemic cardiomyopathy.67,80 Furthermore, the distri-

bution of delayed-enhancement on CMR images differentiates

between VT of endocardial origin and VT of epicardial origin, which

helps in the planning and approach (epicardial, endocardial, or

both) of the ablation.81

Intraprocedural Guidance

As in ablation of AF, postprocessed delayed-enhancement CMR

images can be integrated into navigation systems to guide VT

ablation and have been shown to correlate well with electro-

anatomic maps.82 Using 3D-enhanced CMR, it has been possible to
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identify conduction channels between viable cells of the scar, to

help guide ablation procedures83 (Figure 9). However, there are

still some technical limitations (low spatial resolution) and a lack

of standardization of signal postprocessing algorithms that define

the peri-infarct zone (border zone) and the fibrosis/necrosis zone.

It should be added that many of these patients already have

implantable cardioverter-defibrillators at the time that VT ablation

is being considered, which, despite constant technological

improvements,84 restricts CMR use. Another alternative is to

perform cardiac CT, which allows visualization of the scar and

fusion of the 3D images with the mapping system to guide

ablation.85

Follow-up

Regarding the follow-up of these patients, the role of imaging

may be relegated to the detection of intraprocedural complica-

tions, such as cardiac tamponade, which can be diagnosed using

transthoracic echocardiography. After ablation, CMR could be

performed to detect any uncommon complications, such as steam

pop (myocardial damage caused by excessive heating secondary to

the radiofrequency) or the degree of damage after ablation

(transmurality), although there is little literature on this matter.

Regarding future directions in this field, real-time CMR could be

an alternative for guiding electrophysiological studies, with no

radiation exposure and with direct monitoring of the damage

being caused, unlike standard fluoroscopy procedures.86
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