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Comparison of two cardiac magnetic resonance

imaging postprocessing software tools in a pig model of

myocardial infarction

Comparación de dos programas de posprocesamiento de
imágenes de cardiorresonancia magnética en un modelo porcino
de infarto de miocardio

To the Editor,

Cardiovascular magnetic resonance (CMR) imaging has been

increasingly used for testing of translational and clinical trial

surrogate endpoints in cardioprotective therapies. While the JACC

Scientific Expert Panel provides imaging technique recommenda-

tions and standardization1, postprocessing and analysis methods

vary institutionally. Moreover, most previous CMR postproces-

sing comparison and software testing data stem from human

hearts. Pig hearts largely resemble their human counterparts.

However, pigs have cone-shaped chests and higher resting heart

rates than humans. Medis Suite (QMass MR v.3.2.60.4, The

Netherlands) and CVI42 (v.5.11, Circle Cardiovascular Imaging,

Canada) are among the most widely used scanner-independent

CMR postprocessing software programs. However, their inter-

changeability to assess anatomical and functional parameters in

preclinical models has not been tested. We aimed to compare

Medis Suite and CVI42 readouts in a pig model of experimentally

induced closed-chest acute myocardial infarction (MI). All

procedures were authorized by the Animal Experimental Com-

mittee (#5601) of the local government.2We assessed anatomical

and functional parameters in randomly selected 28 Landracex-

Large white female pig datasets, which included baseline (before

MI), early- (3 days post-MI), and late- (42 days post-MI)

remodeling phase scans.2 In addition, 25 of 28 scans included a

dobutamine stress study (5-10-20-30 mg/kg/min of i.v. dobuta-

mine at 3-minute intervals to elevate heart rate by 30-50%) using

the volumetric module. To exclude interobserver- and experi-

ence-related variabilities, all images were blindly assessed by a

Level 3 accredited operator. Due to animals’ cardiac orientation,

the quality of semi- and fully-automated ventricular contour

segmentation was suboptimal in both products; thus, manual

contouring was chosen.

The following were recorded: left ventricular (LV) end-diastolic

volume, LV end-systolic volume, LV stroke volume, LV ejection

fraction (LVEF), LV mass, right ventricular (RV) end-diastolic

volume, RV end-systolic volume, RV stroke volume, and RV

ejection fraction. Edema, microvascular obstruction (MVO), and

necrosis mass were assessed on T2 short-tau inversion recovery

and T1 inversion recovery sequences at early (1 minute) and late

(10 minutes) gadolinium phases, respectively. On Medis Suite, we

used visual assessment-defined manual planimetry on the

volumetry module to draw the region(s) of interest (the late

gadolinium enhancement [LGE] volume was multiplied by the

myocardial density of 1.055 g/mL), and the full-width half-max

(FWHM) technique, using the tissue characterization module with

semiautomatic pixel value segmentation. Of note, MVO measure-

ment on Medis Suite FWHM is planimetry-based, as the region of

interest is user-defined without semiautomatic segmentation. On

CVI,42 as planimetry was unavailable for tissue characterization,
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Figure 1. Bland-Altman graphs (Medis Suite-CVI42) vs average to analyze systematic differences at rest (A) and stress (B) of the left ventricular mass. C: Bland-

Altman graphs to analyze systematic differences in the tissue characterization parameters between different methods. Dotted black lines indicate mean difference

(bias; see also value in bold) and dashed grey lines indicate limits of agreement 95%. FWHM, full-width half maximum; LV, left ventricle; MVO, microvascular

obstruction.

Figure 2. Correlation between the CMR-derived necrosis percentage (Medis Suite and CVI42) and histopathology (TTC staining) on the 8 datasets (A). Representative

same-day CMR (B) and histopathology (C) images from the same animal. CMR, cardiovascular magnetic resonance; FWHM, full-width half maximum.
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we used FWHM. The day 42 LGE data were correlated with infarct

size assessed by triphenyl tetrazolium chloride (TTC) staining.2

To detect low and strong correlation variables, accepting an

alpha risk of 0.05 and a beta risk of 0.2 in 2-sided tests, 28 datasets

were needed to detect a correlation coefficient of 0.51. A dropout

rate of 0% was anticipated. After normal distribution testing

(Shapiro-Wilk), data were analyzed for correlation by the Pearson

or Spearman tests, when appropriate. The Wilcoxon matched-pairs

signed-rank test and the paired t-test were used to compare

groups, matched as pair measurements of the same subject. For

groups not following a normal distribution, equivalent nonpara-

metric tests were performed.

The 28 datasets consisted of 3 baseline, 15 early remodeling,

and 10 late remodeling phases; among the latter, 8 had

histopathological analysis. Dobutamine stress was available in

25 datasets (89%). The 2 products provided similar data for

biventricular volumes and LVEF, with significantly related

correlation curves between measurements and Bland-Altman

plots, showing only a minor systematic measurement error at

rest and stress (P = nonsignificant). Only LV mass showed a mean

difference of 10.58 g at stress (figure 1). The data were very similar

in all structural parameters; as such, using planimetry and FMWH,

we detected a high correlation between software in the necrosis,

edema, and MVO quantification (P = non-significant), and Bland-

Altman plots showed near-zero systematic differences for the

3 tested parameters (figure 1). LGE quantification agreed better on

planimetry on Medis Suite and CVI42 compared with FWHM on

Medis Suite vs CVI42, and planimetry vs FWHM on Medis Suite

alone. FWHM on both showed a better correlation with

histopathology (TTC staining) than planimetry. However, CVI42

FWHM performed better than Medis Suite FWHM (figure 2).

Our results of volumetry comparison align with previous

human data.3 Likewise, the LV mass variability agrees with human

studies,4,5 supporting the contouring bias and suggesting that LV

mass and its derivates (eg, fibrosis percentage) may be less reliable

in tachycardia with hyperdynamic ventricles. While LV mass is

rarely calculated under stress, the contouring variability in a

hyperdynamic LV may be reduced by using the same software. As

tissue characterization techniques have evolved, most CMR infarct

validation studies in animal models (mainly dogs) are from the

1980s-1990s.6 Despite different available techniques, we report

good reproducibility in all 3 tissue parameters in pigs. LGE

correlated best between planimetry on Medis Suite and FWHM on

CVI42. However, direct comparison between CMR scar size and TTC

staining (both performed on day 42) revealed better FWHM

performance in histopathological correlation vs planimetry,

particularly on CVI42. Small software-specific differences in

semiautomatic segmentation may have contributed to this finding,

indicating the need for further histopathology-validated studies

for technique standardization.

In conclusion, both software tools can be used interchangeably

for biventricular volumes, edema, and MVO. A single product

should be considered for LV mass and necrosis follow-up. Because

CMR use in experimental disease models has been increasing along

with ever-evolving markers and postprocessing techniques,

researchers should evaluate their postprocessing methods care-

fully to deliver reproducible results for a truly reliable bench-to-

bedside translation.
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Insertion of implantable miniaturized cardiac monitors

by qualified nurses in an ambulatory setting

Inserción de monitores cardiacos implantables de forma
ambulatoria por personal de enfermerı́a cualificado

To the Editor,

Major research on insertable cardiac monitors (ICMs) has

focused on simplifying the insertion procedure while increasing

ICM performance with more accurate detection algorithms. The

marked size reduction of ICMs has allowed minimally invasive

insertion in the subcutaneous tissue.1 These improvements have

opened the door for this procedure to be performed by qualified

professionals such as certified nurses, which could result in more

efficient time and resource management, potentially reducing

waiting lists.1

‘‘ICM nurse’’ is an ongoing multicenter, prospective, single-

arm, open-label study to assess the safety and efficacy of the

ICM BIOMONITOR III and IIIm (Biotronik, Germany) at

2 centers in Spain. This interim analysis presents short-term

data on the feasibility of ambulatory nurse-led ICM insertions by

Table 1

Clinical and demographic characteristics and insertion data of the study participants

Variables Nurse

n = 20

Physician

n = 27

P

Age, y 63.4 � 10.8 74.2 � 11.8 .002

Weight, kg, 79.4 � 20.6 72.5 � 11.2 .187

NYHA classa (n = 46) .0001

I 17 (89.5) 7 (25.9)

II 1 (5.3) 15 (55.6)

II-III 1 (5.3) 3 (11.1)

III 0 2 (7.4)

ICM indicationb .0001

Suspected AF 1 (5.0) 2 (7.4)

Syncope of unknown cause 7 (35.0) 6 (22.2)

Recurrent palpitations 1 (5.0) 3 (11.1)

Cryptogenic stroke 11 (55.0) 0

Post-AF ablation monitoring 1 (5.0) 1 (5.0)

Suspicion of cardiac conduction disorder 0 5 (18.5)

Other 0 11 (40.7)

Symptoms 7 (35.0) 20 (74.1) .007

Syncope 5 (71.4) 6 (30.0)

Dizziness 1 (14.3) 9 (45.0)

Palpitations 1 (14.3) 3 (15.0)

Dyspnea 0 2 (10.0)

History of AF

None 17 (85.0) 18 (66.7) .121

Paroxysmal 3 (15.0) 4 (14.8)

Persistent 0 5 (18.5)

Previous AF ablation 1 (5.0) 0 .240

History of thromboembolic events or stroke .0001

None 10 (50.0) 25 (92.6)

Stroke 9 (45.0) 2 (7.4)

Transient ischemic attack 1 (5.0) 0

Comorbiditiesb

COPD 4 (20.0) 1 (3.7) .073
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