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A B S T R A C T

The environment is a strong determinant of cardiovascular health. Environmental cardiology studies the

contribution of environmental exposures with the aim of minimizing the harmful influences of pollution

and promoting cardiovascular health through specific preventive or therapeutic strategies. The present

review focuses on particulate matter and metals, which are the pollutants with the strongest level of

scientific evidence, and includes possible interventions. Legislation, mitigation and control of pollutants

in air, water and food, as well as environmental policies for heart-healthy spaces, are key measures for

cardiovascular health. Individual strategies include the chelation of divalent metals such as lead and

cadmium, metals that can only be removed from the body via chelation. The TACT (Trial to Assess

Chelation Therapy, NCT00044213) clinical trial demonstrated cardiovascular benefit in patients with a

previous myocardial infarction, especially in those with diabetes. Currently, the TACT2 trial

(NCT02733185) is replicating the TACT results in people with diabetes. Data from the United States

and Argentina have also shown the potential usefulness of chelation in severe peripheral arterial disease.

More research and action in environmental cardiology could substantially help to improve the

prevention and treatment of cardiovascular disease.
�C 2022 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.
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R E S U M E N

El medioambiente es un gran determinante de la salud cardiovascular. La cardiologı́a ambiental estudia

la contribución de las exposiciones ambientales con el objetivo de minimizar las influencias nocivas de la

contaminación y promover la salud cardiovascular mediante estrategias preventivas o terapéuticas

especı́ficas. La presente revisión se centra en el material particulado y los metales, contaminantes con la

evidencia cientı́fica más sólida, e incluye las posibles intervenciones. La legislación, la mitigación y el

control de los contaminantes en el aire, el agua y los alimentos y las polı́ticas ambientales de espacios

cardiosaludables son medidas clave para la salud cardiovascular. Entre las estrategias individuales, cabe
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1885-5857/�C 2022 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rec.2022.05.030&domain=pdf
https://doi.org/10.1016/j.rec.2022.05.030
mailto:an2737@cumc.columbia.edu
https://doi.org/10.1016/j.rec.2022.05.030


CONCEPT OF ENVIRONMENTAL CARDIOLOGY

Cardiovascular diseases (CVD) are a leading cause of hospitali-

zation and death in most parts of the world and develop as the

result of complex interactions between genes and the environ-

ment. The undeniable gap between the incidence of CVD and the

identification of risk factors has led the scientific community to

investigate additional risk factors, particularly modifiable factors

such as those related to the environment.1–13

In the 20th century, short- and long-term effects due to air

pollution were seen to produce notable increases in cardiovascular

morbidity and mortality.14–17 The systematic analysis of the

increase in cardiovascular morbidity and mortality coinciding with

increased air pollution in a number of US cities,18,19 as well as

evidence showing a link between metals such as mercury and the

risk of myocardial infarction (MI)20 or between lead and

cardiovascular mortality,21 led to the concept of ‘‘environmental

cardiology’’ in the early 2000s in an article published in

Environmental Health Perspectives, an influential journal in the

field of environmental health science.4

Epidemiologic studies have shown a steady increase in the risk

of CVD linked to short- and long-term exposure to concentrations

of polluting particulates in the environment, with the cardiovas-

cular system most commonly affected.2,4,8,22 Several plausible

physiologic and pathologic pathways have been described, for

instance, increased coagulation, thrombosis, predisposition to-

ward arrythmia, acute arterial vasoconstriction, systemic inflam-

matory responses, and the chronic influence of

atherosclerosis.1,10,11,23–42 These effects have been linked to

ischemic heart disease, congestive heart failure, MI, malignant

ventricular arrhythmia, plaque vulnerability, acute thrombosis,

stroke, diabetes mellitus, and hypertension.5,8,9,43–45 In this

context, the largest study on the influence of the global disease

burden showed that air pollution is the fourth most important risk

factor after hypertension, tobacco use, and dietary factors, even

ahead of hypercholesterolemia.3 Among the 6.7 million deaths

attributable to environmental pollution in 2019, 50% were due to

CVD.3 At an individual level, people around the world would lose

an average of 1.7 years of life as a result of exposure to

anthropogenic air pollution, and sources not readily preventable

(eg, desert dust or natural fires) are included, then the loss would

rise to 2.9 years.46

What is environmental cardiology?

Exposure to environmental pollution—which includes chemical

substances such as particulate matter with an aerodynamic

diameter � 2.5 mm (PM2.5), metals and some organic compounds,

and noise pollution—contributes to the risk of CVD. In the absence

of a universal definition, we suggest defining environmental

cardiology as the interdisciplinary science that studies the

contribution of environmental exposure to CVD, with the aim of

developing specific preventive or therapeutic strategies to mini-

mize the harmful influence of environmental pollution and to

promote cardiovascular health. This review focuses on PM and

metals, the pollutants with the most sound scientific evidence.

CLINICAL EVIDENCE

Environmental pollution

What are the effects of pollution on our health? The clinical

events associated with environmental pollution have been

thoroughly described in the literature.2,7 However, there does

not seem to be a minimum safety threshold, and the relationship

may even be supralinear, ie, the adverse effects of pollution

changes at lower exposure levels are worse than when the same

changes occur at higher exposure levels.47,48

Air pollution is associated with increased hospitalizations due

to ischemic cardiac disease, atrial fibrillation, and heart failure2 but

has also been linked with hospitalization due to aortic dissection43

and with the development of congenital heart disease.49 Some data

also link air pollution to peripheral artery disease, as summarized

in a recent report from the American Heart Association.50 The

proinflammatory state produced by environmental pollution

contributes to a poorer prognosis in CVD patients.45,51

Exposure to higher air pollution increases mortali-

ty.8,17,18,21,45,47 Although it has been traditionally presumed to

result in cardiovascular mortality regardless of pollutant compo-

sition,23 recent data show that metal- and acid-rich particles are

more toxic.52 The increase in daily CVD mortality seen with an

increase of 10 mg/m3 in the 2-day average PM2.5 was 0.55%.53 Even

exposure to PM from desert dust has been associated with an

increased cardiovascular mortality, both on the day of exposure

and on the previous day.54

In actuality, PM is a mix of substances of varying toxicity and

can include soot, hydrocarbons, sulfur and nitrogen compounds,

dust, and various metals such as arsenic, cadmium, and nickel.

Many pollutants form particles suspended in the air and can be

inhaled. These particles may come from natural sources (forest

fires, sea spray, volcanic eruptions, desert dust) or from human

sources (industrial activity, transportation, heating systems, and

reseñar la quelación de metales divalentes como el plomo y el cadmio, que solamente pueden eliminarse

del cuerpo vı́a quelación. El ensayo clı́nico TACT (NCT00044213) demostró el beneficio cardiovascular en

pacientes con un infarto de miocardio previo, especialmente en los diabéticos. Actualmente, el ensayo

TACT2 (NCT02733185) está reproduciendo los resultados del TACT en personas con diabetes. Datos de

Estados Unidos y Argentina también han mostrado la posible utilidad de la quelación en la enfermedad

arterial periférica grave. Más investigación y acción en cardiologı́a ambiental podrı́a contribuir

sustancialmente a mejorar la prevención y el tratamiento de las enfermedades cardiovasculares.
�C 2022 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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fossil fuel combustion in general) and are classified according to

size, an important factor in their harmful effects.

Particulate with a diameter between > 2.5 and � 10 mm is

considered coarse and is deposited in the upper airways. Fine

particulate (PM2.5) is deposited in deeper areas of the lungs,

from where they enter the bloodstream. They are usually

produced by human activities such as woodburning, industry,

construction, automobiles, and the transportation sector in

general (figure 1). Other sources are forest fires, household dust,

and cigarette and kitchen smoke. Ultrafine particulate (diameter

� 0.1 mm [PM0.1]) is also given off by vehicles, particularly

diesel-powered engines, and readily enters the systemic circula-

tion. Fossil fuels burned for heating and cooking also generate

ultrafine particulate.

Heavy metals

A growing number of epidemiologic studies, supported by

experimental evidence and toxicologic studies, indicates that

metal exposure increases the risk of CVD. A recent US study with

over 9000 individuals showed that participants with high exposure

to heavy metals (lead and cadmium) had CVD-related mortality

that was 1.63-fold that of participants with low exposure.55 The

Strong Heart Study,56 a cohort study with 3600 participants from

populations of native Americans who had been exposed to arsenic

in their drinking water, observed higher cardiovascular and all-

cause mortality (hazard ratio = 1.28 per increase in interquartile

interval of arsenic in urine). In this study, greater exposure to

cadmium was also associated with a higher risk of cardiovascular

morbidity and mortality due to ischemic heart conditions, heart

failure, and cerebrovascular disease.57

Environmental metals are ubiquitous, and populations are

chronically exposed through food, air, tobacco smoke, and even

drinking water in some areas. Therefore, the potential impact of

this exposure on public health is considerable. In the United

States, 32% of the decrease in cardiovascular mortality rates

observed between 1988 and 2004 was explained by reduced

exposure to lead and cadmium, adjusting for traditional risk

factors.58

Several studies in Spanish populations have shown a

relationship between metal biomarkers and various outcomes

related to cardiovascular risk.9,44,59,60 The Hortega Study9,12

looked at a sample of the general population in Valladolid

(Spain), finding that copper, zinc, antimony, cadmium, chromi-

um, and vanadium concentrations were associated with the

incidence of CVD over a 13-year of follow-up. In the Aragon

workers’ health study (AWHS cohort),61 workers with urine

metal concentrations similar to those seen in the study by

Hortega et al., high urine concentrations of inorganic arsenic,

cadmium, titanium, and perhaps antimony were linked with

varying degrees of subclinical atherosclerosis.41

The AWHS cohort study is particularly interesting, given that

earlier studies usually focused only on the carotid arteries rather

than vascular territories such as the femoral and coronary

territories. In a Bangladeshi study62 and in the Strong Heart

Study,63 arsenic exposure has been associated with an increased

thickness of the intima-media layers of the carotid. A direct

association has also been found between blood cadmium

concentrations and the thickness of the intima-media layers of

the carotid of Austrian women,11 and the prevalence of athero-

sclerotic plaque in a Swedish study.10,42 In the AWHS study, arsenic

and cadmium were linked to the presence of carotid plaque, but

cadmium and titanium were also linked to femoral plaque, and

titanium and possibly cadmium and antimony were linked to

coronary calcium. These associations persisted after adjusting for

other metals and for classic risk factors.61

Figure 1. Central illustration. Definition and importance of environmental cardiology.
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Metal levels could aid early screening for individuals at risk due

to exposure, thus allowing individualized measures to be taken

before clinical events occur. A randomized clinical trial evaluating

the administration of a heavy-metal chelator agent known as

disodium ethylenediaminetetraacetic acid (EDTA) vs placebo in

patients with a prior MI showed an improvement in the combined

primary outcome (time to all-cause death, recurrent MI, coronary

revascularization, hospitalization due to angina or stroke) in the

intervention group (hazard ratio = 0.82).64 The subgroup of

diabetic patients had even greater benefits and has a risk reduction

of 41%.65

EVIDENCE FROM MECHANISTIC STUDIES

Air pollution enters the body through the alveoli and promotes

the development of CVD through the activation of various

mechanisms, such as inflammation, endothelial dysfunction,

oxidative stress, autonomic dysfunction, and thrombogenicity.8

Other pollutants can enter the gastrointestinal system through

water or other drinks.

Increased inflammation is associated with ischemic events,

arrythmia, heart failure, and a lack of control of cardiovascular

risk factors. Air pollution promotes the production of interleukin 6

(IL-6) and C-reactive protein, inflammatory markers associated

with a higher risk of CVD.24 Exposure to greater environmental

pollution in the 24 hours prior to hospitalization modulates the

inflammatory profile of patients with MI. Greater acute exposure

to sulfur dioxide, a gas linked to fossil fuel combustion and

industrial activity, has been associated with larger MIs and

stronger white blood cell activity.25

Chronic exposure to high air pollution has been associated with

the formation and vulnerability of coronary plaque at values far

below European Union limits (annual PM2.5 < 25 mg/m3). Optical

coherence tomography showed a higher prevalence of thin-cap

fibroatheroma and macrophagic infiltrates in patients with acute

coronary syndrome exposed to a higher annual PM2.5.26 Even

within the exposure limits recommended by the World Health

Organization (WHO) before 2021 (annual PM2.5 < 10 mg/m3,

currently annual PM2.5 < 5 mg/m3), the highest levels are

associated with great arterial white blood cell activity and

leukopoietic activity measured by 18F-FDG uptake, activity levels

associated with cardiovascular events during patient follow-up.27

Oxidative stress also plays a key role in the pathogenic vascular

and myocardial effects of environmental pollution.28 Epidemio-

logic and controlled-exposure studies have observed positive

associations between PM2.5 concentrations and concentrations of

several plasma and urine biomarkers for oxidative stress,29

including increases in thiobarbituric acid reactive substances

(TBARS), a marker of lipid peroxidation.30 The role of oxidative

stress in endothelial damage is supported by data from animal

models. Controlled, short-term exposure to diesel exhaust at

concentrations similar to those detected in urban environments

produces transitory microcirculation dysfunction.32 The inhalation

of diesel particulate causes endothelial dysfunction in rats, an

effect that can be reverted using a treatment with oxygen free

radical scavengers.33 Oxidative stress also has a prominent role on

the myocardium. Isolated rat cardiomyocytes exposed to diesel

particulate exhibited lower contractility, which was attenuated

with antioxidants.34 In another rodent experiment, exposure to

diesel particulate increased susceptibility to myocardial damage

induced by ischemia-reperfusion, an effect associated with the

local generation of oxygen free radicals and proinflammatory

cytokines.35 In rats, prolonged PM2.5 exposure causes damage to

myocardial cells with ultrastructural and inflammatory infiltrate

changes36 and mitochondrial abnormalities,37 leading to remodel-

ing and hypertrophy.38

Several environmental pollutants (eg, lead) can cause auto-

nomic dysfunction and can trigger reflex arcs that affect heart rate

and promote arrhythmia.39 Most epidemiologic studies have

described adverse associations between various indices of heart

rate variability and the concentrations of PM2.5 and other

pollutants,40 which may be related to the higher incidence of

arrythmia reported in patients with MI.45 Additionally, calcium/

calmodulin-dependent protein kinase II (CaMKII) has been

possibly implicated in these proarrhythmic effects.66 These

mechanisms are also involved in the vascular toxicity of metals

such as cadmium and lead.67 For instance, lead can substitute for

calcium in calmodulin. This mechanism has been linked to the

synthase regulation of nitric oxide, affecting the production of

nitric oxide, key for endothelial function and for the inhibition of

platelet aggregation.68

Both PM and the gaseous components of air pollution also favor

the appearance of thrombi.69 Available evidence indicates that

acute exposure to PM2.5 shifts the hemostatic balance toward a

prothrombotic state. This state has been associated with elevated

oxidative stress and inflammation biomarkers, as well as with

platelet activation and fibrinolysis reductions.69 Furthermore,

exposure to ultrafine particulate increases the in vitro formation of

factor XIIa, whereas postexposure thrombin formation is inhibited

in animals deficient in this factor, indicating direct modulation of

the intrinsic coagulation pathway.70

Numerous studies have linked metal exposure with biomarkers

of oxidative stress67,71 and metabolic72 and epigenetic pat-

terns.73,74 Gene-environment interactions are another field of

growing interest, as they could aid early screening for individuals

who may benefit from stronger prevention strategies and could

identify biological mechanisms to help understand the role of the

environment in CVD and broaden the strategies used to prevent

and monitor these diseases.

PREVENTION STRATEGIES AND TREATMENT

First of all, what can be done? Public health measures, through

legislation and mitigation measures and control of environmental

pollutants, are key strategies to minimize air and water pollution

as well as food contamination with toxic compounds and to protect

populations from the harmful effects of these substances on

cardiovascular health (figure 2). To encourage such measures, in

September 2021 the WHO published new air quality guidelines,

recommending that countries establish a PM2.5 annual limit of

5 mg/m3 and a daily limit of 15 mg/m3. These guidelines are well

below the legally established limits in the European Union, the

United States, and most other countries. In Spain and many Latin

American countries, most cities have pollution levels far above the

WHO guidelines and even above the limits established by the

countries themselves. As a collective strategy, therefore, legislation

should be proposed and enacted to comply with WHO recom-

mendations. Environmental policies that reduce pollution levels

around the world are, for instance, the optimal design of bicycle

lanes and pedestrian spaces, the promotion of public transporta-

tion, measures to reduce emissions from fuel and other toxic gases,

and new building codes for sustainable housing and offices, the

prohibition and elimination of old, highly-polluting heating

systems, and the promotion of green areas.

Individual protection strategies (figure 2) could include

respiratory barriers as an option for outdoor environments.

Nevertheless, respiratory protection such as gauze, cotton,

surgical, or cloth masks has not yet been validated for reducing

exposure to PM2.5, hence they are not recommended in this

J. Bañeras et al. / Rev Esp Cardiol. 2022;75(12):1050–1058 1053



regard. Other types of personal protective equipment, such as face

masks with respirators (eg, N95 masks), are specifically designed

and validated to filter 95% of particles, including PM2.5. However,

no personalized intervention intended to reduce pollution expo-

sure has been shown to reduce cardiovascular events.22 More

studies would be needed to assess the effectiveness of these kinds

of personal barriers.

Indoors, PM2.5 concentrations can be reduced with high-

efficiency air purification systems in home air conditioning

installations. Although these systems has been reported to have

an impact in lowering inflammatory and circulatory thrombogenic

biomarkers and blood pressure,75 the evidence is insufficient,

discouraging statements on the cardiovascular benefits of air

purifiers.76 Additionally, real-time information on air pollution

levels could be a way to protect public health under certain

circumstances.77 However, there is not enough evidence on the

clinical impact of this measure and on who may benefit.

Diet may also have an impact on the effect of environmental

pollution on our health. Dietary supplements with omega-3 fatty

acids have been associated with short-term subclinical cardiovas-

cular benefits against PM2.5 exposure,78 and supplements with

vitamin B (folic acid, B6, B12) have shown a possible benefit in

mitigating the effects of PM2.5 on inflammation and autonomic

cardiac dysfunction in pilot studies.79 Folic acid supplements have

also shown an ability to eliminate arsenic from the body more

quickly and to reduce its toxicity.80

Regarding physical exercise in areas with high environmental

pollution, the interaction depends on multiple mechanisms. Public

health models have estimated that in most cases, the benefits of

physical exercise outweigh the risks from pollution,81 although

evidence is insufficient for people with established risk factors of

CVD.82

Research on treatments has focused on eliminating metals from

the body. Cadmium and lead, which are divalent cations, can be

treated with high-affinity chelators, such as EDTA and its salts

(disodium EDTA and calcium disodium EDTA). To date, several

studies83–85 have shown that intravenous disodium EDTA

enhances the urinary excretion of toxic metals, including cadmium

and lead. Arenas et al.83 published the results of disodium EDTA

infusion in patients with a history of MI, which produced a 71%

increase in total urinary excretion of metals compared with

original levels, with a notable effect on lead (3.835% increase) and

cadmium (633% increase). High excretion of these metals after

EDTA administration is indicative of the cumulative exposure to

these metals over the years from various sources (air pollution,

water, tobacco, soil and food contamination, etc.) and of the

difficulty in eliminating these toxic metals, highly similar to

essential metals such as calcium and zinc, which they replace in

many proteins and enzymes.

The Trial to Assess Chelation Therapy (TACT) is a double-blind,

placebo-controlled, 2 � 2 factorial clinical trial to evaluate the

risks and benefits of 40 disodium EDTA infusions compared with

placebo in 1708 participants with a history of MI. Patients

received follow-up for 5 years. The trial showed a significant

reduction of 18% (P = .035) of the composite main outcome of

death, MI, stroke, coronary revascularization, and hospitalization

for angina.64 The most obvious benefit was seen in patients with

a history of diabetes, with a 41% reduction in the hazard ratio of

the combined cardiovascular endpoint (P < .001) and a 43%

reduction in all-cause mortality (P = .011).65 At present, the

TACT2 clinical trial (NCT02733185) is reproducing the TACT

results in people with diabetes. The results from TACT2 will be

available by late 2023. In a recent meta-analysis, the patients

most clearly benefitting from EDTA treatment were those with

Figure 2. Environmental strategies for cardiovascular health.
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diabetes and peripheral artery disease.86 Indeed, several cases

have been published showing remarkable benefits in patients

with severe peripheral artery disease in the United States87 and

Argentina88 (figure 3). In the future, metal chelators that can be

taken orally or are easier to administer may be developed. For

instance, an oral chelator, known as succimer or dimercapto-

succinic acid (DMSA) and mainly used to treat saturnism (lead

poisoning), is now available but has still not been tested for

potential cardiovascular benefits.

A common question is whether it might be useful to measure

metals in blood or urine to identify individuals at risk of CVD and

to apply early intervention, and to determine the concentrations

that could be considered toxic. There are several well-

established metal biomarkers, with half-lives and sample types

(blood, urine, others) considered most suitable for each metal

(table 1). However, additional studies are needed to determine

whether routine concentration testing could be helpful in

clinical practice.

TRAINING AND SOCIOECONOMIC IMPACT

The residual risk is supported by ever-increasing evidence and

probably includes uncontrolled risk factors as well as risk factors

not considered or not yet known. Environmental pollution,

although one of the cardiovascular risk factors,3,11,12,46 has not

yet achieved widespread health care and social awareness

compared with other risk factors. Training in this field is greatly

lacking in cardiology and, therefore, the effect of environment

should be taught in training curricula, eg, as part of the curriculum

on climate change and environmental health.

For the first time, the 2021 European Prevention Guidelines

include a specific section on environmental pollution and classify

air pollution reduction as class I, recommending lowering PM

emissions and gaseous pollutants, reducing fossil fuel use, and

limiting carbon dioxide emissions as measures to lower morbidity

and mortality due to CVD.89 Consequently, the European

Commission agreed on a series of measures to be implemented

Table 1

Metal biomarkers associated with cardiovascular disease.

Metal Sample Half-life Method Additional Information Possible Reference Range*

Arsenic Urine 1 to 30 d depending on

species

Liquid chromatography–mass

spectrometry for species separation

Avoid eating fish on the days prior to

collecting the sample

10 mg/L (first morning urine)

Cadmium Blood

Urine

30 to 100 d

Decades

Mass spectrometry (blood and urine) Smokers have high values 1 mg/L

1 mg/L (first morning urine)

Lead Blood

Bone

30 to 100 d

Decades

Mass spectrometry (blood)

X-ray fluorescence (bone)

Blood is the usual marker, whereas

bone is used for research purposes

3.5 mg/dL (blood)

* For arsenic, urine concentration according to correspondence with the water limit; for cadmium, values around 3-fold the geometric mean in blood and urine from the

National Health and Nutrition Examination Survey (NHANES),55 clearly related to the toxicity level; blood lead concentration is based on the guidance from the Centers for

Disease Control and Prevention for children and pregnant women, figures clearly associated with cardiovascular disease.

Figure 3. Photographs of patients with severe peripheral artery disease at the beginning and after repeated infusions of disodium EDTA

(ethylenediaminetetraacetic acid) chelator in a patient in Miami, United States (A, reproduced with permission from Arenas et al.87) and Rosario, Argentina

(B, reproduced with permission from Ujueta et al.88).

J. Bañeras et al. / Rev Esp Cardiol. 2022;75(12):1050–1058 1055



by 2030 to reduce harmful emissions from traffic, power plants,

and agriculture, within the context of fighting climate change.

Patients at risk for CVD should be advised to avoid long-term

exposure to areas with high environmental pollution. Opportunis-

tic risk screening programs (class IIb recommendation, level of

evidence C) may be considered.89 In addition, according to the

same guidelines, patient and health care professional organiza-

tions are essential for training and political initiatives. ‘‘Clean air’’

legislation should be strengthened to encourage lower particulate

emissions and the use of public transportation. Learning about the

impact of environmental pollution should start in schools and

families. Patient training (eg, patient schools) could also be

fostered.

Last, environmental pollution also has a financial impact. Air

pollution-related mortality represents a cost to the global

economy of around US$225 billion dollars in lost wages and over

US$5 trillion in welfare losses.90 Problems derived from air

pollution cost every person living in Spain nearly 1000 euros each

year.91
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