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INTRODUCTION

This narrative review considers the use of machine learning

(ML) or artificial intelligence (AI) in cardiology publications with

an emphasis on diagnostic models. In 2022, 1 in 60 cardiovascular

disease publications in PubMed had ML or AI as a medical subject

heading. Despite the abundance of articles, few diagnostic models

have been validated or translated into practice. While this may be

no worse than with other research avenues, there were high

expectations that AI would revolutionize medicine. So, when will

the revolution arrive?

As with many new technologies, ML in cardiology will go

through the Gartner hype cycle—currently it is probably in the

‘‘Trough of disillusionment’’ and the field now needs to move up

the ‘‘Slope of enlightenment’’ to the ‘‘Plateau of productivity’’.1 To

reach these next stages, 3 things need to happen. First, clinicians

need to understand the language of AI and ML and what is being

said, and not said, in the articles they read. Second, scientists and

clinicians need improve on current study designs. Third, robust

validation studies and translational research is needed to identify

where and how ML will make daily medical practice more precise

and productive.

This manuscript has been written from the perspective of a

scientist most interested in how ML can improve diagnosis. It

focuses on diagnostics, though much of the content could translate

to other uses of ML.

AI is strictly a machine which continues to learn through a flow

of data after the development of the initial model. This is extremely

rare. ML and statistical models are those developed on a bounded

data set. Almost all cardiology articles using the term, AI, are

strictly ML or statistical models. At their core, whatever we call the
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A B S T R A C T

Machine learning in cardiology is becoming more commonplace in the medical literature; however,

machine learning models have yet to result in a widespread change in practice. This is partly due to the

language used to describe machine, which is derived from computer science and may be unfamiliar to

readers of clinical journals. In this narrative review, we provide some guidance on how to read machine

learning journals and additional guidance for investigators considering instigating a study using

machine learning. Finally, we illustrate the current state of the art with brief summaries of 5 articles

describing models that range from the very simple to the highly sophisticated.
�C 2023 Published by Elsevier España, S.L.U. on behalf of Sociedad Española de Cardiologı́a.
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R E S U M E N

El aprendizaje automático (machine learning) en cardiologı́a es cada vez más frecuente en la literatura

médica, pero los modelos de aprendizaje automático aún no han producido un cambio generalizado de la

práctica clı́nica. En parte esto se debe a que el lenguaje utilizado para describir el aprendizaje automático

procede de la informática y resulta menos familiar a los lectores de revistas clı́nicas. En esta revisión

narrativa se proporcionan, en primer lugar, algunas orientaciones sobre cómo leer las revistas de

aprendizaje automático y, a continuación, orientaciones adicionales para quienes se plantean iniciar un

estudio utilizando el aprendizaje automático. Por último, se ilustra el estado actual de la técnica con

breves resúmenes de 5 artı́culos que van desde un modelo de aprendizaje automático muy sencillo hasta

otros muy sofisticados.
�C 2023 Publicado por Elsevier España, S.L.U. en nombre de Sociedad Española de Cardiologı́a.
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method, they are attempting to improve prediction or classifica-

tion.2 The appearance of ML and AI in the medical literature means

clinicians and medical researchers are interacting with the culture

and language of computer science even while the language of

statistics is evolving. In time the languages may converge, but for

now they confuse—both those reading the literature and those

moving between disciplines. For the purposes of this article, a

single term, ML will be used to encompass all that others call AI,

ML, or statistics.

Statistics is a young discipline (it is only 120 years since the

concept of a statistical hypothesis was introduced),3 and computer

science is even younger. In the last 20 years, the processing power of

computers has become sufficient for ML to enter mainstream and to

drive the new discipline of data science (an amalgam of computer

science and statistics). As with any young discipline, we should

expect not only changes in language, but a turnover in key concepts.

This should engender caution within disciplines, such as cardiology,

which make use of statistics and computer science concepts.

Difficulty arises when concepts transfer from one discipline to

another and become axiomatic—an example is the concept of

statistical significance, which is ubiquitous in medicine, but is now

considered poor methodology by academic statisticians.4

The first section is aimed at all who read the medical literature.

Differences in language between statistics and computer science

used to describe diagnostic model or risk score development are

discussed. In the second section, for those looking to incorporate

ML in their research, additional concepts that need to be

considered before investing the time and effort to develop new

models are introduced. Finally, a few exemplar articles on ML in

the cardiology literature are evaluated.

PART 1: HOW TO EVALUATE ML PAPERS

To understand an ML article, one must be familiar with the

terms used. Table 1 translates computer science terms to statistics

terms. The table is not exhaustive and many ML glossaries are

available online.8 Understanding the specific methods used is

important, but recognizing good science and good algorithm

development methodology is also crucial, regardless of the ML

techniques applied.

Understanding ML methods

Q1: What is the purpose of the study?

ML articles can be grouped into 3 categories: identifying

associations between input variables and an outcome, illustrating

the potential of a technique, or developing a model to change

practice. Sometimes, articles combine these goals. An article may

claim to develop a diagnostic model but also discuss causal

relationships, which is not necessary for the model to be clinically

useful. Often, there is no attempt to show that the developed model

is better than current methods. This does not invalidate the study,

but it should be recognized that the model is in an early stage of

development and is not ready for implementation.

Q2: What is the cohort/from where does the data come?

If the study population does not reflect the population in which

the model will be applied, the algorithm may be biased. This is

known as spectrum bias (see Tseng et al.9 for a cardiology

example). Readers should pay special attention to how race, age,

and ethnicity are dealt with. For example, the American Heart

Association risk score for mortality in heart patients assigns lower

risk to black patients,10 which may lead to less intervention, and

this can embed systematic inequities in society and health care

systems.

Q3. What is the outcome?

When evaluating the usefulness of a model, it is important to

consider if it is prognosticating something clinically meaningful

and if its outcome would affect treatment or investigation

decisions. Additionally, consider if the model is diagnosing

something that is otherwise difficult to diagnose at the time it is

expected to be applied. These are the important ‘‘so what?’’

questions.

Additionally, note if the model classifies (assign to a class, eg,

whether a patient has heart failure or not) or provides a probability

of a patient being in a particular class (eg, a patient has a 31.4%

probability of having heart failure). A prediction may then turn into

a classification by application of a threshold. An example of a

classifier is a decision tree, and a method capable of giving

probabilities is logistic regression. The ML literature does not

always distinguish between the 2 types and may, for example, call

logistic regression a classifier by applying a threshold (often

arbitrarily at a probability of 50%).

Q4. What is the machine learning method used and why?

The choice of ML method often appears arbitrary and is often not

justified. Recent successful methods for similar problems may be

the reason for choosing a particular method. Where several

methods are considered, a process using a training and/or testing

data set may be used to create the best ML model (figure 1). The

exact process can vary, and the reader will come across descriptions

which may be quite complex, often relegated to a supplement, such

as feature selection, cross validation (K-fold, leave-one-out, boot-

strapping), and hyperparameter tuning to control the learning

process. A difficulty that a clinical reader may face is not knowing

how well the article has been refereed from a computer science (or

statistical) methodological perspective. Editors could help by

indicating the types of reviewers of an article.

Q5. What metrics are being used to determine validity?

The most crucial metrics for evaluating ML are those for the

validation cohort with the chosen ‘‘best’’ model. Readers may also

encounter metrics used to compare models. Some of these are

discussed in the section for model developers below.

Diagnostic metrics

For diagnostic and risk classification, the receiver operator

characteristic (ROC) plot and the associated area under the

Abbreviations

AUC: area under the curve

AI: artificial intelligence

ML: machine learning

NPV: negative predictive value

PPV: positive predictive value

ROC: receiver operator characteristic
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Table 1

Common terms with a ‘‘translation’’ between computer science and statistical language.

The language of computer science (AI/ML) The language of statistics

commonly

used in the medical literature

Comment

Algorithm/inducer/learner Method (eg, logistic regression) The program that learns from the data to produce a model

Model/network Model The learned program that maps inputs to predictions/classes

Inputs Predictor variable data _

Feature Independent (explanatory/

predictor) variable or covariate

_

Feature selection Variable selection This is often an automated process to attempt to choose relevant variables.

Most familiar in the medical literature are stepwise selection. These

techniques are not robust and prespecification of variables by domain

experts is preferred5,6

Feature engineering Domain knowledge variable

selection

The selection of variables based on domain knowledge by experts. It may

involve a further step such as principal components analysis to reduce the

dimension of the dataset

Label/outcome/response/class Outcome/event/dependent

variable

_

Optimization Model fitting (regression) _

Supervised learning Prediction or regression _

Classification _ Rather than a prediction (continuous scale), simply outputs a predicted

class; eg, predicts heart failure or not heart failure

Weights Parameters (eg, beta coefficients

in logistic regression models)

Often converted to the likes of odds ratios or hazard ratios

Confusion matrix of outcome verse classification N x N (often 2 x 2) matrix While in the medical literature convention appears to have the ‘‘true’’

outcomes in the order of positive, negative, as columns and the test

outcomes as rows, this is not always the case with ML

Data sets

Training Development/derivation The data set used to train a model (arrive at the models weights/

parameters)

Validation/testing (sometimes) _ Sometimes used to choose the best of several models or to optimize ML

algorithm. This may be wrapped up with the training set and implied in the

method used – eg, k-fold cross validation

Testing/hold out Validation/generalisability Application of the (best) of the trained models in a data set that was set-

aside for this purpose. The most important performance metrics in a article

are those of the performance within this data set

Data analysis

Prevalence Prevalence (TP + FN)/n

Recall _ Proportion of all in a class that are predicted to be in that class

Recall (for binary outcome)/TP rate Sensitivity

(TP rate)

TP/(TP + FN)

Specificity TN/(TN + FP)

FP rate 1-specificity

(FP rate)

FP/(FP + TN)

Precision _ Proportion of all predicted to be in a class that are truly in that class

Precision (for binary outcome) Positive predictive value TP/(TP + FP) [prevalence dependent]

_ Negative predictive value TN/(TN+FN) [prevalence dependent]

Accuracy _ (TP + TN)/n [prevalence dependent]

_ Negative likelihood ratio (LR-) Probability that someone with the event tests negative/probability that

someone without the event tests negative (< 1 is diagnostic)

Positive likelihood ratio (LR+) Probability that someone with the event tests positive/probability that

someone without the event tests positive (the larger the better)

F1 score _ 2TP/(2TP + FP + FN) [harmonic mean of precision and recall] (the larger the

better; prevalence agnostic)

Calibration/reliability Calibration For prediction of diagnosis states this is a graph of actual proportion

diagnosed with the disease to predicted proportion with the disease

Precision/recall curve _ Precision on the y-axis vs recall on the x-axis

ROC curve ROC curve ROC curve. A curve formed by plotting sensitivity vs 1-specificity

UC AUC Area under the ROC curve

Additional

Class imbalance _ When the proportion of patients in each class is not equal

Up-sample/oversampling _ A method used for development of some classification algorithms when

the classes are imbalanced. This process may degrade performance7

AUC, area under the curve; FN, false negative; FP, false positive; n, sum of TP, TN, FP, FN; ROC curve, receiver operator characteristic curve; TN, true negative; TP, true positive.
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ROC curve (AUC) are the most commonly used metrics.

However, they should not be used on their own or without

further interpretation.

The ROC plot is a curve created by evaluating diagnostic

performance at all possible outcome thresholds (probabilities for

ML). The sensitivity and specificity are calculated at each

threshold. The ROC plot is the curve formed on a sensitivity vs

1-specificity grid, and the AUC is the area under that curve. It is

often assumed that the main diagonal represents a coin toss and

that only values on the curve above that diagonal are useful. This,

though, is incorrect.11 Only the point in the middle of the diagonal

(0.5, 0.5) is equivalent to a fair coin toss. Other points may contain

diagnostically useful information depending on the prevalence. For

example, the point 0.0 at the bottom left is equivalent to saying all

diagnostic test results are negative, which in a low prevalence

population has a probability much greater than 0.5 (equal to 1-

prevalence).

The AUC may be interpreted as the probability that if one

randomly drew the model outputs for a patient who had the

outcome of interest and for another who did not, that the patients

who had the outcome of interest had a greater output value than

the patient who did not. In this light, it is difficult to understand

why the AUC has become such a popular metric to describe the

model performance. Figure 2A illustrates how 2 models with

identical AUCs (0.94) can have different ROC curves. If the clinical

situation is such that the cost of missing a diagnosis is very high,

then the curve with the highest sensitivity at high specificity

would be the preferred model.

Figure 2 illustrates some less common diagnostic plots that

may appear in the medical literature. The precision/recall

(positive predictive value [PPV]/sensitivity) is common in

computer science. It can be used to choose between models at

desired levels of PPV or sensitivity (figure 2B). Figure 2C is a violin

plot. In this case, it shows that the baseline model has more very

high probabilities for those with the event. The net benefit curve

(decision curve), figure 2D, shows that, for the situation where

false negatives and false positives are evenly weighted, there is

net benefit in using the new model only where a prediction

threshold of < 0.1 is applied. The risk assessment plot, figure 2E,

illustrates that the difference in performance between the

baseline and new model is a result of a small improvement in

the lowering of the probability of those without the event (the

solid teal, ‘‘1-specificity’’, curve for the new model moves nearer

the bottom left compared with the dotted baseline model), but a

large, inappropriate, lowering of probability for those with the

event (the solid sensitivity curve moves toward the lower left for

the new model, rather than the top right, compared with the

baseline model).

Figure 1. Central illustration. Schematic of process of developing and validating a machine learning model. One or several models are trained/derived and compared

using different methods. The best model, Mx, may then undergo some further validation or tuning of parameters. The final model is validated in a data set that may

be external (from other sources), temporally different from the other data set(s), or randomly chosen from the same data source as the other data set(s). CS,

computer science; M1, model 1; M2, model 2; Mn, model n.
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Some ML models report accuracy, the proportion of true

positives and true negatives in the cohort, but this is not a useful

measure in typical clinical situations where prevalence is low. For

example, one could stand at the door of a hospital and turn away

everyone with chest pain. The accuracy for diagnosis of myocardial

infarction is likely to be 90% or more. Unfortunately, the sensitivity

is 0% and one would be out of a job, in jail, or worse.

For classification models, common metrics include sensitivity,

negative predictive value (NPV), specificity and PPV (see table 1).

To generate these metrics, it is important to choose, by consensus

among clinicians, clinically meaningful threshods.12 When there

are differences in prevalence between training, test, and validation

data sets, NPV and PPV should not be compared as these vary with

prevalence. Accompanying these may be the negative and positive

likelihood ratios (LR-, LR+) which are robust against prevalence.

These ratios indicate if the test adds any diagnostic value. Data

scientists may also report the F1 score.

All metrics should be reported with a confidence interval and it

is important to consider both bounds when interpreting results.13

The point estimate is only one of many possible values the

underlying population could take. The null value may lie within the

confidence interval, but, contrary to what is often stated, this does

not mean the test is not useful. For example, if the LR- (95%

confidence interval) is 0.80 (0.55-1.05), and if LR- < 0.9 is

considered clinically meaningful then, in this case, values from

0.6 to 0.9 are all more likely than the null. For diagnostic

algorithms, a particular bound may be important from a safety or

utility perspective; eg, the lower bound for sensitivity is most

important for assessing safety.

Importance of calibration

Calibration is important, yet often missing in analysis.14

Goodness of fit tests (eg, the Hosmer-Lemonshow test), are much

less informative than a calibration plot of the actual proportion

with the outcome vs the predicted portion with the outcome,

figure 2F. Models which discriminate may have poor calibration,

which limits their usefulness. Check calibration curves at the

probabilities of interest. For example, when the predicted rate is

3%, but the actual rate is 6%, then this could result in a clinically

relevant underestimation of risk in a very large proportion of

people in whom it is applied.

Q6. How are bias and equity handled?

In addition to assessing how the article has handled possible

spectrum bias, consider if evidence is provided on the performance

Figure 2. A: receiver operator characteristic (ROC) curves of 2 models with identical areas under the ROC curve. B: precision-recall curve. The baseline model is best

at highest precision, but for recall > 0.92 the new model has best precision. C: scatter and violin plots. The bar on the violin plot is at the median probability for the

model. An alternative is a box-and-whiskers plot. D: decision curve/net benefit curve. The greater the net benefit the better. Usually illustrate only over prediction

thresholds of clinical relevance. In this case, the baseline model is better than the new model except at low (< 0.15) probabilities. E: risk assessment plot. The closer

the teal curves are to the bottom left, the better the model is at assigning low probabilities to those without the outcome. The closer the black curves to the top right,

the better the model is at assigning high probabilities to those with the outcome. In this case, the new model improves on the baseline for those without the

outcome, but for probabilities > 0.2 it is worse than the baseline model. F: calibration plot. Ideally all points are along the diagonal line, indicating that predicted risk

accurately reflects the actual risk. 95% confidence intervals are shown.
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Figure 3. Heuristic for deciding whether to undertake model development in the first place.
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of the model in specific subgroups known to face inequity in the

population. For example, are performance metrics given for an

indigenous population? When looking at such data, be aware that

confidence intervals will be wider where numbers are low and take

care not to interpret the model as ‘‘not working’’ in specific

populations because of this.

Further literature

Useful articles for understanding ML are those by Marteen van

Smeden,15 Sebastian Vollmer from the Alan Turing institute,16 and

Google Alphabet ML expert Yun Liu.17 Van Smeeden et al. start

with the question ‘‘Is a new prediction model really needed?’’

Vollmer’s first question relates to patient benefit. Where the

researchers have not been ‘‘cognisant of the path from develop-

ment to implementation’’ the manuscript may not pass the ‘‘so

what?’’ test. In Yun Liu’s article on how to read ML articles they

state ‘‘clinical gestalt plays a crucial role in evaluating whether the

results are believable: because one of the biggest strengths of ML

models is consistency and the lack of fatigue, a useful check for

believable ML results is whether an experienced expert could

reproduce the claimed accuracy given an abundance of time.’’

Finally, if a formal tool is wanted for assessing risk of bias in a

prediction model, then I suggest the PROBAST tool.18,19

PART 2: HOW TO UNDERTAKE RESEARCH WITH ML

The heuristic, figure 3, is a brief guide to reaching a decision on

the viability of a study.

(1) Before developing a new model, assess the quality of existing

tools and determine if they can answer your research question,

then assess the availability of relevant data. To pass the ‘‘so

what?’’ test, survey those most affected by the introduction of a

new tool, including patients, clinical staff, and health system

management. Perhaps adopt ‘‘co-design’’ principles. These go a

step further than consultation and ensure those most affected

receive a ‘‘product’’ meaningful to them. For example, in New

Zealand codesign is being used to reduce inequities for Māori in

the delivery of cardiac health. By going first to Māori

communities with a very limited agenda, the researcher

acknowledges the primacy of the community and individual

to make choices about their own health. The research may, for

example, find the community has little interest in the

probabilities of the proposed model, but instead suggests

something different. Notably, the United States’ ‘‘Blueprint for

an AI Bill of Rights’’ adopts a similar approach with its first

principal, which states that ‘‘Automated systems should be

developed with consultation from diverse communities,

stakeholders, and domain experts to identify concerns, risks,

and potential impacts of the system’’.20

(2) Assess the suitability of available data. Large, routinely

collected data sets may have limitations, such as missing

clinically relevant material or clinical outcome data biased

because it is primarily used for financial purposes. To avoid

selection bias, consider the target patient group and assess the

potential data sets for bias. If the data exclude certain patient

groups, the developed model will be limited in relevance and

may bias treatment against those groups, especially if they are

at higher risk. For example, a heart failure prediction model

developed primarily on non-Māori may underpredict events in

Māori, perpetuating inequities.

(3) To establish sufficient data rules of thumb of 10 to 20

(minimum) outcome events per variable have been popular-

ized, but Richard Riley’s recent work provides tools to make a

priori calculations which inform the maximum number of

variables in a model.21–23 If some variable data are missing,

imputation is accepted as better than discarding data incom-

plete patients because it reduces the risk of bias and reduces

uncertainties in final estimates. However, there is a need to

assess first if the data are missing at random.24–28

(4) Stepwise methods of variable selection, which use arbitrary P

value thresholds to reduce the number of variables, are

outdated and can result in biased and poorly transferable

models.5,6 The starting point for variable selection is to consult

experts to determine the commonly collected predictors in

clinical practice.29 If the model relies on variables that are only

accessible retrospectively, there needs to be a strong reason for

inclusion, as it would also require their prospective collection

for the model’s future use.

In the past, perhaps because of the need for simple algorithms

able to be used at the bedside, continuous variables like age and

systolic blood pressure were dichotomized. This process discards

information and is unnecessary with today’s technology.30

(5) Model outcomes must be relevant to the model users. For

example, if the aim is to develop an in-hospital prediction

model for cardiologists, is this of relevance to the cardiologist

and what level of improvement over current predictions would

be of use?

(6) Changing clinical practice is difficult, yet it is the implied goal of

all ML. Before undertaking ML research, establish the need for

the model and the barriers to implementation. These may

include the likes of the ‘‘black-box’’ nature of some ML,

management priorities, and IT resources. Codesign may help

overcome such barriers.

(7) An external validation data set is not strictly required and there

are good internal validation techniques that should always be

applied. Best practice will avoid data-splitting for smaller data

sets.31,32 However, generalizability is still best assessed with

external data sets. Identify these prior to model development

and choose the largest data set to be the development data set.

(8) Finally, if the exercise is to be more than an academic one, it

must be compared with standard practice. While not doing so

is not fatal, it certainly means a model is much less likely to be

adopted by others.

Choosing algorithms

While diagnosis involves classification, ML models do not have

to output a classification. A model that produces a probability

output may be more informative. Logistic regression can be

thought of as a baseline algorithm that is easy to implement and

interpret. Ensemble models such as random forests or gradient

boosting can improve on simple logistic regression. This is the

familiar wisdom of the crowd. There are several forms of ensemble

models by combining multiple models or using bootstrapping. A

recent survey of methods can be found in Sagi and Rokach.33

Reporting

It is important to report how the ‘‘best’’ model for validation

was chosen and the methodology for this should be prespecified. It

need not be based on the AUC. As figure 1 illustrates, there are

other considerations depending on the intended purpose of the

model. This includes calibration. Metrics that should be considered

include log-likelihood, Brier skill (the relative change in Brier score
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from a baseline model), Nagelkerk’s R2, and the integrated

discrimination improvement reported separately for those with

and without events. If the intended use does not include presenting

predicted probabilities, then the best model may be the one that

has the highest specificity for a prespecified minimum sensitivity

(for identifying low-risk patients) or vice versa (for identifying

high-risk patients).

The primary outcome measures are both the discrimination

(predefined) and calibration in the validation cohort of the best

model. These must be reported in the abstract along with a

confidence interval.

PART 3: EXAMPLES OF ML IN CARDIOLOGY

Myocardial infarction decision support in the emergency
department

Troponin is the strongest predictor of a myocardial infarction

(not surprisingly as it is also part of the definition) on presentation

to the emergency department. Troponin concentrations are also

associated with age and sex, both of which are also associated with

myocardial infarction. The kinetics of high-sensitivity troponin,

and in particular the rate of change, are also related to the

outcome.34

Decision support tools for risk stratification in the emergency

department have been constructed from one person’s expert

opinion (HEART), have used scores developed for other purposes

(ADAPT), have developed a fit-for-purpose score using logistic

regression (EDACS), and have used simple decision trees based on a

single variable, namely the troponin result.35–39 Application of ML

that can provide support via providing predicted probabilities is

new. Body et al.40 T-MACS combined high-sensitivity troponin

with electrocardiogram, vomiting, sweating and the nature of the

pain in a logistic regression in 2017, which outputs a myocardial

infarction probability. Discrimination was high (0.90 in the

external validation data set) and a threshold chosen to aid

decision-making meant that the model could be applied clinically

with a high degree of safety (very high sensitivity). Performance at

the threshold was good and the model has been implemented in

the Greater Manchester region of the United Kingdom.41 No

calibration was provided, and the algorithm was not well

calibrated in a further external validation.42 This indicates the

need for recalibration prior to application in new settings.

Than et al.43 evaluated an ML model in a large international data

set developed by Abbott diagnostics that used a very simple

feature set: age, sex, 2 troponin measurements, and the time

between the 2 measurements. The model had been developed

using gradient boosting, had high-discrimination, and was well

calibrated in the validation data set. It was not compared against

other models. In a further external validation, discrimination

remained high and performance metrics at thresholds remained

good.44 However, the model underpredicted myocardial infarction

at prediction values < 50%. Again, this points to the importance of

checking calibration for each cohort in which a model is likely to be

applied.

Heart failure diagnosis

ML models have been developed for heart failure diagnosis and

have been summarized in 2 systematic reviews.45,46 These reviews

highlight the diverse range of both situations, in which ML is

thought to be of use, and the techniques employed. For instance,

convoluted neural networks are used to enhance pathologists’

reading of whole-slide biopsy images,47 various methods predict

readmission but with poor discrimination,48 and deep neural

networks used demographic and electrocardiogram features to

identify heart failure show good discrimination, but no comparison

to current methods.49

Two notable ML cardiology articles display the features of

quality model development and assessment. The first, by Dana Sax

et al.,50 aimed to improve 30-day adverse event prediction in

patients presenting to emergency departments with acute heart

failure. They compared an existing tool, STRATIFY, with their ML

model made with 13 variables from STRATIFY and 58 possible

additional variables. Data were divided into test (20%) and

development (80%) data sets with simple imputation for missing

variables and 10-fold cross validation for hyperparameter tuning.

Model assessment was, overall, by the AUC, ROC and calibration

curves. Precision/recall curves were also presented and, at

prespecified risk thresholds, sensitivity, specificity, negative and

positive likelihood ratios, PPV, NPV and F1 score. Across all

thresholds net reclassification was used to compare a logistic

regression model with an XGBoost model. The authors thoroughly

discussed the limitations, including possible bias from its

retrospective nature, and future plans around implementation.

They demonstrated improvement with an ML model over

STRATIFY (AUC, 0.76 cf 0.68). While using only the AUC for overall

comparison is limiting, and an AUC of 0.76 may not be sufficient to

precipitate a change of practice, the detailed assessment of

performance at clinically relevant thresholds mitigated this

limitation. The other limitation is there is no assessment of

performance in key demographics.

The second, by Kuan Lee et al.,51 used research data from

14 studies and 13 countries with adjudicated outcomes to develop

and validate a model to aid decision support for the diagnosis of

heart failure. The data sets were identified using a systematic

review methodology including assessment for risk of bias. Four ML

models were developed using multiply imputed data sets.

Validation involved treating each of the 14 data sets as an external

data set (without imputation) and using the remaining data sets for

model development. Several criteria including calibration, Brier

score, AUC, and proportions of patients above and below specified

probability criteria were used to judge model performance.

Additionally, decision curves (published in the supplement) were

produced. Diagnostic performance was assessed for a wide range of

demographic subgroups. The limitations of the study were well

addressed, particularly acknowledging the possibility of selection

bias as 16 of the 30 studies eligible for inclusion did not participate.

This was another excellent study, with few weaknesses. One, the

use of NPV and PPV to compare patient subgroups, rather than

sensitivity and specificity, is to be avoided because the differences

in these metrics may be driven by difference in the prevalence of

heart failure in each subgroup rather than true differences in

model performance.

Coronary artery disease probability

Forrest et al.52 developed an ML from electronic health records

to use as an in-silico marker of coronary artery disease producing a

probability of coronary artery disease. Training and validation

were conducted in a United States cohort, and external testing in a

United Kingdom cohort. The AUC was the principal diagnostic

metric. Sensitivity, specificity, accuracy, PPV and NPV were also

reported, but there is no indication of the threshold used to

determine these later metrics. This is an example of the difficulty

with computer science language not being familiar to clinical

readers, as it is commonplace within computer science to use a

probability of 0.5 as a classification threshold. However, if this was

the case in this article, it should have been reported. Also missing
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was a calibration plot. Brier scores were referred to, but these are

inadequate and noninformative on their own. Not referred to in the

article was a precision-recall curve and calibration plot shown in

the appendix. The latter showed the algorithm overpredicted the

probability of coronary artery disease for all but the highest

predictions. A very positive feature of the study was the

demonstration of the association of the probabilities with coronary

artery stenosis and all-cause death. There was no comparison with

other prediction models.

SUMMARY

While the age of ML is upon us, it has not yet been translated

into practice. This is partly because there is a learning curve among

decision makers to understand what constitutes a well executed

ML study. Here I have attempted to provide some translation

between the language of computer science and the more familiar

language of the medical statistician and have then highlighted

some useful metrics and graphical tools to evaluate ML models.

Finally, I identified some studies demonstrating different elements

of ML in cardiology.
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