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OVERCOMING THE LIMITATIONS OF OBSERVATIONAL STUDIES

There is no doubt that observational epidemiological studies

have been enormously useful in the search for possible determin-

ing factors of disease and in the development of etiologic

hypotheses. Historically, however, these studies have been

criticized for their important limitations when establishing

anything more than a simple association between the phenotype

or exposure factor studied and the disease of interest.1

Some observational research articles in the medical literature

report some degree of association between diverse factors (social,

behavioral, environmental, nutritional, genetic, epigenetic, etc.)

and different cardiovascular diseases. Many of these studies go

unnoticed by the scientific community, mainly because their

findings are isolated results that have not been reproduced or

corroborated by other studies. Nonetheless, on other occasions,

several independent research studies can reach the same

conclusion, so that the degree of scientific evidence obtained is

sufficient for the scientific community to consider human

experimentation using randomized controlled trials (RCT), which

are able to confirm whether observational findings are valid and

infer causality.

Unfortunately, the associations proposed by some of these

observational studies are frequently not confirmed by the results

of RCT. This is generally due to the inability to rule out, on the one

hand, the presence of confounding factors or variables that were

unexpected or not measured and, on the other, the existence of an

inverse causal relationship between the exposure and the

outcome.1 Thus, despite the systematic use of adjustment

methods (eg, multivariate analyses) used to try to control

confounding factors in a given study, the more than likely

existence of some type of bias (impeding control of residual

confusion) does not allow causality to be inferred with any

certainty. Another explanation for the apparent lack of agreement

among results is that the research questions posed in observa-

tional studies and RCT are often different. This has generated an

epidemiological focus that analyzes observational studies as if

they were RCT.2

Randomized controlled trials are considered the gold standard

since they provide the highest level of statistical evidence possible,

making them the ideal study type to answer questions that may

arise in clinical research. Nonetheless, despite all their advantages,

the particular technical, ethical and economic circumstances

specific to each research study and their individual procedures

do not always allow the use of RCT.

MENDELIAN RANDOMIZATION ANALYSES: CONCEPTUAL

AND METHODOLOGICAL FRAMEWORK

Mendelian randomization (MR) studies are considered a special

case within a more extensive type of applied statistics, known as

instrumental variables (IV). This type of analysis was developed for

the social sciences (particularly econometrics), where they are

usually used to estimate the impact of certain policies or social

measures when it is not possible to implement an experimental

design.3

These analyses are based on the identification of some type of

variable natural phenomenon (known generically as IV or simply

‘‘instrumental’’) used in the statistical analysis to adjust for

possible confounding factors in the research study.

For these IV phenomena (variables or instruments) to be

considered appropriate, they should agree with a series of

premises. A common way to define and explain such conditions

is through the use of DAG (directed acyclic graphs).4 These graphs

are the basis of these studies and show the possible

causal correlations of the variables contemplated in the study

(Figure 1).

First, the variable should have a quantifiable relationship with

the exposure of interest. Second, the variable cannot be directly

related to the result or outcome of the intervention except through

its correlation with the exposure itself. Third, the IV should be

independent of possible unknown or uncontrollable confounding

factors that may exist between the intervention and the outcome.5

If these requirements are met, IV analyses can confirm whether

there is a causal relationship between an exposure (treatment or
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intervention) (eg, environmental contaminant or a medication)

and a result (outcome) (eg, high blood pressure or myocardial

infarction).

As previously mentioned, MR studies are a particular type

of IV analysis. What characterizes these studies is the use of

genetic variants such as IV for the analysis. Thus, in this case, the

variable natural phenomenon chosen is a certain genetic

polymorphism that is related to an exposure factor, a potential

cause of a certain disease, or an outcome under study. This

methodology is inspired by and based on Mendel’s second law

(law of independent assortment), which states that, save for

exceptions (eg, the presence of genetic linkage or stratification in

the population), the assortment of parental genes among

gametes is random due to meiotic division of germ cells during

gametogenesis.1 In other words, gene transfer from parent to

child is a chance occurrence, similar to random assignment into

the different experimental groups created for RCT. This circum-

stance has enabled MR studies to be equated with RCT,1 with the

difference that MR study participants are randomly assigned to

different genotypes instead of to different clinical trial groups

(Figure 2).

As shown in Figure 2, MR studies are a nonexperimental

alternative to RCT. In this case, the randomized assignment of

individuals into groups does not depend on the researcher;

instead, it is the independently inherited genes themselves that

are used to create a statistical approach. That is, as shown in

Figure 1, the instrument (Z) represents the treatment assignment,

X is the treatment, and Y is the outcome of the trial (Figures 1

and 2).

As previously mentioned, these analyses are especially useful

in observational epidemiological studies, where they allow a

causal effect to be inferred, despite the existence of problems of

unknown or unmeasurable confounding factors. Furthermore,

their usefulness has also been verified by analysis of data from

RCT. These studies do not present the limitations of observa-

tional studies because the randomization process divides any

confounding factors equally between the experiment groups.

Nonetheless, RTC are not free from complications, since trial

volunteers often show problems of adherence or noncompliance

with the treatment under study. Under these circumstances, it is

recommended to analyze the data on an intention-to-treat (ITT)

basis, which, even though it is the ideal option, can lead to

biased results due to the aforementioned lack of treatment

adherence.6

In an ITT analysis, the results obtained from the trial groups

are compared without considering whether all the participants

included in the analysis had really received the treatment. In this

situation, ITT analysis does not estimate the effect of the

treatment (intervention) on the outcome; instead, it actually

estimates the effect of being assigned to receive treatment.

Mendelian

randomization

Randomized

controlled trial

Randomization method

Intervention No intervention Allele “Z”

Exposure “X”

Comparison of results

between groups

Comparison of results

between groups

Exposure “X”

Allele “≠ Z”

Random segregation of alleles

Equal assignment of confounding

factors among the groups 

Figure 2. Comparison of a randomized controlled trial and a Mendelian randomization study.

Z: instrumental

Variable
X: exposure Y:  outcome

U: unknown

confounding

factor

Figure 1. Graphic representation of the characteristics of an instrumental

variable.
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Given this situation, IV analysis offers the possibility of truly

estimating how the treatment affected the participants who

received it.6

INSTRUMENTAL VARIABLES ESTIMATION

Over the years, several statistical methods have been devel-

oped to calculate IV estimators according to the particular

circumstances of each analysis. When a binary instrument is

available (eg, a gene with only 2 alleles), an IV estimator known as

the Wald estimator is usually used.6 To obtain this estimator, the

first step is to calculate the correlation between IV (Z) and

the outcome variable (Y) (Figure 1), which in an RCT would be

equivalent to the estimate of the ITT analysis (if an RCT is being

analyzed, as previously discussed, Z equals the randomized

assignment; therefore, the correlation between Z and Y corre-

sponds to the estimate of the ITT analysis). This correlation is able

to confirm whether there is a true causal relationship between the

exposure variable (X) and Y. If exposure (X) has no effect on

the result or outcome (Y), Z and Y are independent; likewise,

if X affects Y, Z and Y are not independent. Nonetheless, the

association between Z and Y is not as strong as the association

between X and Z.

When estimating the effect of X on Y, it should be considered

that Z does not perfectly determine X; therefore, the second step in

this method entails recalculating the effect of Z on Y, based on the

effect of Z on X. In this manner, the IV estimator is obtained, which

is the ratio between the difference in Y according to the different

values of Z and the difference in X according to the values of

Z (equation 1):

EðY ¼ 1jZ ¼ 1Þ � EðY ¼ 1jZ ¼ 0Þ

EðX ¼ 1jZ ¼ 1Þ � EðX ¼ 1jZ ¼ 0Þ

Considering that E(Y = 1jZ = 1) is defined as the mean value of

Y among the study participants assigned to treatment Z = 1, the

calculated estimator will be sensitive to those patients who

withdraw from or are lost to the trial. If all the volunteers

complied with their assigned treatment, the IV estimate would

be equal to the estimate obtained by the ITT analysis;

nevertheless, as the number of withdrawals grows, this estimate

becomes oversized in proportion to the number of the losses

from the trial.

Moreover, in some situations, instruments with more than

2 values (eg, multiple polymorphisms) are available or there is a

need for simultaneous adjustment by other covariables. In these

circumstances, the 2-stage least squares estimator is usually used.6

Basically, this method is applied in the following manner: first, the

adjusted values for the exposure variable (X) are obtained with a

regression of that variable (X) on the IV (Z) and any known

confounding variables (U). Thus, the predicted values of X are

estimated depending on the adjustment made with the regression

(equation 2a). Second, another regression is done with the

outcome variable (Y) on the predicted values of X, which function

as independent variables in the regression model (equation 2b).

In this model, the coefficient of the predicted value of X (b)
(equation 2b) is interpreted as the estimate (by IV) of the effect of

the exposure on the outcome:

aÞX ¼ / # 0 þ a # kK þ e

bÞY ¼ b # 0 þ b # 1X þ b # kK þ e

Given the introductory nature of this article, we recommend

that readers consult other more specific publications as a source of

further information on MR studies and estimation of odds ratios

and relative risk, statistical power calculation, validation of

premises, and 2-stage study designs.5–9

CONTRIBUTIONS OF MENDELIAN RANDOMIZATION TO

CARDIOLOGY: IMPORTANT FINDINGS AND EXAMPLES

In recent years, cardiovascular research has benefitted from the

application of MR statistical methods,10 which has allowed

confirmation of causal relationships between different risk factors

and certain cardiac diseases. In most cases, the association

between these factors and diseases was well known beforehand;

however, the aforementioned presence of possible biases (typical

of observational studies) impeded inference of causal mechanisms

with any certainty.

A good example that ideally illustrates the fundamental

principles of these studies is found in a recently published article

on the correlation between body mass index and certain heart

diseases.11

The researchers of this study questioned whether there was a

causal relationship between excess body fat and the appearance of

different cardiovascular diseases. Following an MR study strategy,

the authors’ first step was to identify a genetic polymorphism

(instrument) related to a risk factor (exposure) associated with a

cardiac disease. In this case, they opted to use a single nucleotide

polymorphism of the FTO gene (gene related to obesity and fat

mass), which had been associated with the amount of body fat and

body mass index in numerous previous studies.

The following step was to obtain the data necessary to carry out

the statistical analysis. Specifically, information was obtained

on the genotype and body mass index of > 190 000 participants,

through different international studies done by the collaborating

research groups. Afterward, the participants were divided into

2 groups according to the single nucleotide polymorphism

variation of interest presented by each volunteer. As indicated

in Figure 2, this step would be equivalent to randomization in an

RCT.

The final step was to analyze the data obtained in the study,

and the results of each group were compared according to the

presence or absence of different cardiac diseases (coronary heart

disease, heart failure, hemorrhagic stroke, hypertension, etc.),

metabolic disorders (dyslipidemia, type 2 diabetes mellitus, and

metabolic syndrome) or according to the values of several

cardiometabolic factors (blood pressure, cholesterol, triglycerides,

C-reactive protein, interleukin-6, etc).

The results showed the existence of a causal relationship

between obesity and heart failure and also confirmed previous

findings obtained from observational studies. The rationale

behind this study is the following: if the effect of the chosen

polymorphism (instrument) increases only the amount of body

fat (risk factor), then it stands to reason that the cause of the

observed increase in the incidence of heart failure is body mass

index.

In short, and based on the general outline of the IV analysis

shown earlier in a DAG (Figure 1), the particularities of this study

are summarized in Figure 3.

Other studies with these characteristics have obtained equally

relevant results. The article by Cohen et al12 deserves special

mention. These authors showed the benefits of the persistent

reduction of low-density lipoprotein concentrations on the

number of myocardial infarctions. Another notable example is

the study by Chen et al,13 which found a correlation in men

between elevated alcohol consumption and hypertension. In

contrast, the results of other research studies of this type

contradict those obtained with conventional observational
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methods. A recent study14 that researched the association between

the sPLA2 enzyme and cardiovascular disease was not able to

find the putative relationship, contrary to reports from several

traditional studies.

In concluding this section, it is worth mentioning that,

obviously, this type of study also has certain limitations. First,

there are the usual problems that can appear in any genetic

association study, such as the existence of deviations in the

expected allelic frequencies due to several causes (population

stratification, existence of linkage disequilibrium phenomena,

pleotropic activity of some genes, etc.) or problems with the

sample size; given that the sample size is inversely proportional to

the square of the correlation between the genetic instrument and

the exposure and that it rarely exceeds 5% for genetic instruments,

it is not always simple to obtain an appropriate number for

these studies, which would be at least between 5000 and

100 000 patients in the most favorable scenario.15 Furthermore,

there are some specific limitations to IV analyses, such as the

difficulty of finding an appropriate instrument (simple or multiple

polymorphism, or genetic risk scores) for the study of interest, the

lack of compliance with the conditions that should be met by IV,

or lack of statistical power.16

CONCLUSIONS

Mendelian randomization studies are an essential experi-

mental approach for disentangling the causes of numerous

cardiovascular diseases. Due to this methodology, important

advances are currently being made in the study of correlations

between different modifiable exposures and certain cardiac

diseases. The possibility to establish true causal relationships in

observational epidemiological studies where there is a suspicion

of the existence of uncontrollable confounding factors has

generated a wave of optimism within the scientific community.

In observational epidemiological studies with suspected uncon-

trollable confounding factors, the possibility of establishing true

causal relationships has generated a wave of optimism within

the scientific community. This enthusiasm is corroborated by

observing the exponential increase in the number of scientific

studies based on this methodology published in recent years.

Furthermore, the continuous development and advances of

technologies associated with ‘‘omics’’, together with the perfec-

tion of current statistical methods, will doubtlessly overcome

current experimental limitations and confirm MR studies as

fundamental tools for clinical research and therapeutic devel-

opment. Consequently, these studies will become essential

elements to support RCTs during the drafting of clinical practice

guidelines and the implementation of public health policies and

measures.

Lastly, important international coalitions have been created in

recent years, which are in charge of the development and

coordination of large biological resource centers. These organisms,

often called biobanks, are every researcher’s dream because they

collect, store, and process all sorts of human biological samples and

are a repository for abundant related data.17 These data include the

results of research studies based on human biological samples that

are directly applicable to MR analyses. Consequently, the exposure

of interest does not need to be measured in the same population in

which the outcome is observed. Thus, providing there are valid

information sources about the effect of the gene in the exposure,

this information could be directly linked to the genotype of the

study population (and with the outcome measured) to make causal

inferences by using the split sample design of MR studies. This is

especially relevant because it avoids the need to once again

measure the phenotype studied in the entire sample and only the

genotype needs to be obtained, which represents an enormous cost

savings.9

These circumstances, together with the inexorable advances of

biomedical technologies, undoubtedly guarantee a promising

future for MR studies.
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