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Electronic pacemakers have been the standard of care for over

50 years1 for patients with symptomatic bradycardia caused by

conditions such as sick sinus syndrome, complete heart block, and

congenital heart block.2 Effective, electronic devices are subject to

hardware malfunction, recalls of generators and leads, implant-

related complications and infections.3 Although the incidence is

not high, device-related infections continue to rise, affecting over

2% of device implants4 and often requiring complete hardware

removal and treatment with systemic antibiotics, hospitalization,

and placement of a backup temporary pacemaker wire in

pacemaker-dependent patients.5 Another important at-risk popu-

lation that could benefit from biological pacemakers are fetuses

with congenital heart block (frequently related to maternal anti-

Ro/SSA antibodies).6 Those patients cannot receive intra-uterine

electronic devices and frequently develop fatal hydrops-fetalis

because of their inability to maintain an adequate heart rate to

support the circulation.7

As an alternative to electronic devices, our group8 and others9

have been working for over a decade to develop biological

alternatives to electronic pacemakers. Many important contribu-

tions have been made to the field, and, despite positive popular

press (eg, Briggs10), skeptical opinions have been expressed by

experts in the field11 about the prospects of clinical application.

The purpose of the present editorial is to review the different

biological pacemaker strategies focusing on the potential for

human translation.

BIOLOGICAL PACEMAKERS: WHICH STRATEGY IS PREFERABLE?

Different approaches have been studied preclinically including:

a) stem-cell based approaches12; b) hybrid (cell- and gene-based

approaches);12 c) gene therapy over-expressing a single or a

combination of ion channels12 (known as functional reengineer-

ing), and more recently, d) gene therapy to achieve somatic

reprograming.13,14

Different stem-cell based approaches have been used such as

embryonic stem cells,15,16 or induced pluripotent cells capable of

differentiating into spontaneously-beating heart cells, and gener-

ate short-term biological pacemaker activity. While generally

effective, they are not free of problems: they can have limited

engraftment and rejection (requiring immunosuppressive

therapy) and be proarrhythmic, given the heterogeneity of

the cell population obtained with present isolation and purifica-

tion techniques. As a result of this heterogeneity, different action

potential durations (affecting myocardial repolarization) can

create a substrate for functional reentry-induced arrhythmias.

Hybrid approaches, in which stem cells are ‘‘loaded’’ with ion

channel genes, have also been used to deliver the gene of interest

without a viral vector.12 The greatest experience with this

approach has been obtained using human mesenchymal stem

cells that have been ‘‘loaded’’ with one of the HCN (hyperpolariza-

tion activated cyclic nucleotide-gated) family of genes (responsible

for generating the pacemaker funny current or If). The major

advantage of this approach is that human mesenchymal stem cells

are somewhat nonimmunogenic. On the other hand, they tend to

migrate from the injection site with the potential to create

multiple ectopic foci of automaticity.17

The first de novo biological pacemaker by gene therapy was

created by Miake et al18 in 2002. Over-expressing a dominant

negative mutant (Kir2.1AAA) of the inward rectifier current (IK1)

converted a normally-quiescent myocyte into an oscillating one,

capable of generating spontaneous action potentials and biological

pacemaker activity in vivo. While this approach was effective, the

use of a mutant gene could represent a problem for human

translation due to safety and regulatory concerns. Other

approaches focused on overexpressing wild-type or mutant forms

of the HCN family of genes (responsible for the pacemaker current

or If) have been developed in different small- and large-animal

models. While this approach offered the advantage of expressing

an endogenous gene, the heart rates achieved were not optimal

and the delivery methods were highly invasive (open-chest or left-

sided/arterial approaches).19

In contrast to functional reengineering approaches, somatic

reprogramming seeks to create genuine sinus node tissue from

ordinary heart muscle. The approach involves reexpressing a gene,

TBX18, that figures prominently in the development of the sino-

atrial node (SAN) during embryonic life; this suffices to create a

biological pacemaker in situ.13,14 Initially, in vitro experiments
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demonstrated the ability of the human TBX18 gene to reprogram

normal working myocytes into pacemaker cells or induced SAN

cells. Moreover, when injected into a rodent model of heart block,

TBX18-transduced animals exhibited biological pacemaker activity

that originated from the injection site, as evidenced by QRS

morphology and axis.13 When induced SAN were analyzed by

morphometry and molecular techniques, they resembled native

SAN cells. Induced SAN cells have a characteristic long lean shape,

increased levels of HCN2 (the pacemaker channel gene) and

connexin 45 (the predominant gap junction in the SAN), and

decreased levels of connexin 43 (the predominant gap junction in

the normal working myocardium) and IK1.
13 All these features of

TBX18-induced SAN cells mimic the signature characteristics of the

native SAN.

To further characterize the effects of TBX18-induced biological

pacemaker when delivered in a clinically-realistic fashion, we

implemented a modification of a protocol we had previously

described.14,20 In brief, TBX18 (or control) was injected through a

venous catheter into the high posterior septum. The entire

procedure was performed by minimally-invasive methods limited

to the venous side. The catheter used for TBX18 delivery was

advanced through the femoral vein, and has been used extensively

in human stem cell trials.21 Interestingly, those animals that

received TBX18 exhibited physiologically relevant biopaced

rhythms that allowed them to achieve higher levels of physical

activity compared with age-matched controls. Additionally, those

animals that received the biopacer required minimal backup

electronic pacemaker utilization, unlike controls, which were

largely pacemaker-dependent.

DELIVERY SYSTEMS: READY FOR THE CLINIC?

A fundamental consideration when delivering a biological

therapy (or any therapy) to patients is the invasiveness of the

method. No physician will consider offering patients a treatment

that requires open-chest delivery (unless there is an additional

indication to perform surgery), or even a left-sided approach with

the consequent risks of hematoma and stroke. As described above,

we have recently developed a minimally-invasive (venous cathe-

ter-based system) to deliver our biopacer gene without the need

for open-heart surgery or access to the left-sided circulation.14,20

This technique is a modification of a cardiac catheterization

technique routinely used by clinicians in the human electrophysi-

ology laboratory. The genes are delivered by a commercially-

available catheter (NOGA MyostarTM; Biological Delivery Systems,

Diamond Bar, California, United States) that can be advanced to the

heart, construct a 3-dimensional electroanatomic map and inject

the biopacer with a high level of precision by a retractable needle.

Other groups have proposed injection into the left bundle (via

the arterial circulation) in the setting of device-related infec-

tions.22 Accessing the left-sided heart can have catastrophic

consequences, such as stroke and vascular complications. A recent

editorial by Rosen11 speculates that there may be more risks when

injecting in the right side in the setting of a device infection, but

this is difficult to rationalize given the systemic nature of blood-

borne infections. In our opinion, a right-sided minimally-invasive

delivery technique would be optimal when translating this

technology to the clinic.

FIRST-IN-HUMAN TRIAL: WHAT WOULD BE THE IDEAL

POPULATION?

As clinician-scientists, when developing a new class of

therapeutic agent to better treat our patients, we must target

first those patients at risk that have no good prognosis, or no good

alternatives with currently available therapies. Three groups of

patients satisfy these criteria: a) patients with pacemaker-related

infections who are pacemaker-dependent and need their hardware

to be removed to more effectively treat the infection3; b) pediatric

congenital heart disease patients who have unfavorable anatomy

for endovascular devices and often need multiple system changes

when they grow into adult life, and c) fetuses with intrauterine

congenital heart block, who often develop hydrops fetalis and

stillbirth due to the lack of reliable therapy.7

CONCLUSIONS

The thought of recreating a sinus node by a single human gene

injection, avoiding the need for implanting electronic devices, may

sound like one of those stories that we read in science fiction

novels.23 With the advent of minimally-invasive delivery systems,

novel biological agents, and accumulating efficacy and safety data

in preclinical models of human disease, we may soon see this

dream come true.
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