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INTRODUCTION

Multivariable regression models are widely used in health

science research. Data are frequently collected to investigate

interrelationships among variables or to determine factors

affecting an outcome of interest. It is here where multivariable

regression models become a tool to find a simplified mathematical

explanation between the candidate predictors and the outcome.

The ultimate goal is to derive a parsimonious model that makes

sense from the subject matter point of view, closely matches the

observed data, and has valid predictions on independent data.

Due to advances in statistical software, which have made them

friendlier to the user, more researchers with limited background in

biostatistics are now engaged in data analysis. Thus, the goal of this

review is to provide practical advice on how to build a

parsimonious and more effective multivariable model. The overall

steps in any regression model exercise are listed in Table 1. Due to

limited space, only the most practical points are presented.

DATA STRUCTURE AND TYPE OF REGRESSION ANALYSIS

Regression models share a general form that should be familiar

to most, usually: response = weight1 � predictor1 + weight2 �

predictor2 + . . . weightk � predictork j normal error term. The

variable to be explained is called the dependent (or response)

variable. When the dependent variable is binary, the medical

literature refers to it as an outcome (or endpoint). The factors that

explain the dependent variable are called independent variables,

which encompass the variable of interest (or explanatory variable)

and the remaining variables, generically called covariates. Not

infrequently, the unique function of these covariates is to adjust for

imbalances that may be present in the levels of the explanatory

variable. Sometimes, however, the identification of the predictors

for the response variable is the main study goal, and in this case,

every independent variable becomes of interest. Models can be

used for different tasks (Table 1) that can be summarized as
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A B S T R A C T

Multivariable regression models are widely used in health science research, mainly for two purposes:

prediction and effect estimation. Various strategies have been recommendedwhen building a regression

model: a) use the right statistical method that matches the structure of the data; b) ensure an

appropriate sample size by limiting the number of variables according to the number of events; c)

prevent or correct for model overfitting; d) be aware of the problems associated with automatic variable

selection procedures (such as stepwise), and e) always assess the performance of the final model in

regard to calibration and discrimination measures. If resources allow, validate the prediction model on

external data.

� 2011 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L. All rights reserved.
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R E S U M E N

Actualmente los modelos multivariables de regresión son parte importante del arsenal de la

investigación clı́nica, ya sea para la creación de puntuaciones con fines pronósticos o en investigación

dedicada a generar nuevas hipótesis. En la creación de estos modelos, se debe tener en cuenta: a) el uso

apropiado de la técnica estadı́stica, que ha de ser acorde con el tipo de información disponible; b)

mantener el número de variables por evento nomayor de 10:1 para evitar la sobresaturación delmodelo,

relación que se puede considerar una medida grosera de la potencia estadı́stica; c) tener presentes los

inconvenientes del uso de los procesos automáticos en la selección de las variables, y d) evaluar el

modelo final con relación a las propiedades de calibración y discriminación. En la creación demodelos de

predicción, en la medida de lo posible se debe evaluar estas mismasmedidas en una población diferente.
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prediction and/or effect estimation.2 Table 2 summarizes the

differences in strategies between prediction and effect estimation

models.

Models for Prediction

These models are created when the main goal is to predict the

probability of the outcome in each subject, often beyond the data

from which it originated. As an example, the clinical prediction

rules derived from amodel fitted to the Framingham data has been

shown, after multiple external validations, to provide a quanti-

tative estimation of the absolute risk of coronary heart disease in a

general population.3 For these types of models, the researcher

needs to balance complexity (and accuracy) versus parsimony; in

other words, how closely the model needs to fit the data at hand

versus how generalizable the predictions will be in external

populations. Complex models, such as those with multiple

interactions, excessive number of predictors, or continuous

predictors modeled through complex nonlinear relationship, tend

to fit poorly in other populations.

Several recommendations have been proposed for building

these types of models,2,4,5 the following being the most important:

a) incorporate as much accurate data as possible, with wide

distribution for predictor values; b) impute data if necessary as

sample size is important; c) specify in advance the complexity or

degree of nonlinearity that should be allowed for each predictor; d)

limit the number of interactions, and include only those

prespecified and based on biological plausibility; e) for binary

endpoints, follow the 10-15 events per variable (EPV) rule to

prevent overfitting. If not possible, then proceed to data reduction;

f) be aware of the problems with stepwise selection strategies. If

used, proceed with a backward elimination instead, and set the

criterion for stopping rule equivalent to AIC (P = .157). With small

samples, relax evenmore the stopping rule (P = .25 to .5). Use prior

knowledge whenever possible; g) check the degree of collinearity

between important predictors and use subject matter expertise to

decide which of the collinear predictors should be included in the

final model; h) validate the final model for calibration and

discrimination, preferably using bootstrapping, and i) use shrink-

age methods if validation shows over-optimistic predictions.

Models for Effect Estimation

Thesemodels are created either as tools for effect estimation, or

as a basis for hypothesis testing. Most articles published in

biomedical literature are based on this type of models. Because

there is a little concern for parsimony, the balance would be in

favor of developing a more accurate and complex model that

reflects the data at hand. However, always use principles

that prevent overfitted estimates, and if necessary precede to

data reduction methods. It is always a good principle to validate

the final model based on calibration and discrimination measures.

Types of Models Driven by the Structure of the Data

Another consideration when building a regression model is to

choose the appropriate statistical model that matches the type of

dependent variable. There is a multitude of variation in how the

data is collected, and not infrequently the same data can be

Abbreviations

ARD: absolute risk difference

EPV: events per variable

KM: Kaplan-Meier method

MAR: missing at random

MCAR: missing completely at random

MFP: multivariable fractional polynomial

NMAR: non-missing at random

NNT: number needed to treat

Table 1

Overall Steps in Multivariable Regression Modeling

Determining the aim of the model

Prediction (prognostic models)

Effect size (or explanatory models)

Ascertainment of true outcome

Minimize endpoint misclassification error

Prefer hard outcomes for prognostic models

If combined endpoint, ensure the direction of the effect is the same

for both components

Consider using new outcomes such as days alive and out of hospital in

heart failure studies

Choosing appropriate statistical method dependent on outcome

and prediction type

Continuous: linear regression

Binary: logistic regression

Binary with censored observations

Cox proportional regression

Parametric survival regression

Competing risks

Longitudinal & time-to-event endpoint: Joint modeling approach

Longitudinal data with interest in intermediate endpoints: multi-state

Markov modeling

Proper model building, including internal validation

Parsimony versus complexity

Selection of the right variables. Caution on the inappropriate use of stepwise

procedures. Use backward instead of forward. Tune up the stopping rule

according to the sample size1

Avoidance of overffiting (EPV rule of thumb)

Do not assume linearity for continuous variables; transform them if necessary.

Use FPF or RCS for complex nonlinear functions

Assessing model’s performance

Internal validation (preferably bootstrapping). Parameters to be evaluated

Overall performance measures (R2, Brier score)

Discrimination ability (AUC, C-statistics, IDI, NRI)

Calibration (Hosmer-Lemeshow goodness of fit test, calibration plot,

calibration slope, Gronnesby and Borgan test, calibration-in-the-large)

External validation. The same parameters, but in external data

The need for regression coefficient’s shrinkage

If calibration assessment shows overly optimistic coefficients, then

Adjust shrinkage based on calibration slope, or

Use more complex penalization methods such as LASSO and MLE

Presenting the results

Unadjusted versus adjusted

Relative metrics (OR, HR)

Absolute metrics (ARD, NNT)

ARD, absolute risk difference; AUC, area under the ROC curve; C-statistics,

equivalent to AUC for censored data; EPV, number of events per variable; FPF,

fractional polynomial function; HR, hazard ratio; IDI, integrated discrimination

index; LASSO, least absolute shrinkage and selection operator; MLE, maximum

likelihood estimation; NNT, number needed to treat; NRI, net reclassification index;

OR, odds ratio; R2, explained variation measure; RCS, restricted cubic splines.
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analyzed with more than one regression method. Table 1 shows

the type of regressionmethods thatmatch themost frequent types

of data collected (based on a normal error assumption). A detailed

explanation of each of these methods is beyond the scope of this

paper, and therefore, only the most important aspects will be

provided.

Linear Regression Analysis

The main assumption is the linearity of the relationship

between a continuous dependent variable and predictors. When

untenable, linearize the relationship using variable transformation

or apply nonparametric methods.

Logistic Regression Analysis

The logistic regression model is appropriate for modeling a

binary outcome disregarding time dimension. All we need to know

about the outcome is whether it is present or absent for each

subject at the end of the study. The resulting estimate of effect for

treatment is the odds ratio (OR) adjusted for other factors included

as covariates. Sometimes, logistic regression has been used

inappropriately to analyze time-to-event data. Annesi et al.6

demonstrated that, compared to Cox, the two methods yielded

similar estimates, and an asymptotic relative efficiency of both

models close to 1 only in studies with short follow-up and low

event rate. Therefore, logistic regression should be considered as

an alternative to Cox regression only when the duration of the

cohort follow-up can be disregarded for being too short, or when

the proportion of censoring is minimal and similar between the

two levels of the explanatory variable.

Time-to-Event Design

Survival regression methods have been designed to account for

the presence of censored observations, and therefore are the right

choice to analyze time-to-event data. Cox proportional hazard is

the most common method used. The effect size is expressed in

relative metrics as a hazard ratio (HR). A constant instantaneous

hazard risk difference during follow-up is the main assumption.

Several nonparametric alternatives to Cox regression have been

proposed in the presence of nonproportionality.7

Parametric survival methods are recommended as follows: a)

when the baseline hazard or survival function is of primary

interest; b) to get more accurate estimates in situations where the

Table 2

Differences in Strategies According to the Task Assigned to the Model

Aims Considerations Validation

Prediction Parsimony over complexity; the integrated

information from all predictors is what matters

Calibration and discrimination using

bootstrapping (internal validation)

Prediction of an outcome of interest

(prognostic score)

Avoid overuse of cutpoints Shrinkage of main effects (linear shrinkage or

penalization)

Identification of important predictors Multiple imputation if missingness>5% Calibration and discrimination on independent

data (external validation)

Stratification by risk Don’t excessively rely on stepwise procedures. If too

many predictors or insufficient subject matter

knowledge, then use MFP algorithm

Update coefficients in the new data if necessary

Use EPV rule of thumb to limit the number of

predictors. Group predictors if needed

(i.e., propensity score)

Convert regression coefficients into scores using

appropriate algorithms

Spend additional degrees of freedom on interactions

and modeling nonlinear relationship of continuous

predictors if prior knowledge suggested. Limit

testing of individual terms; instead consider

overall significance

Evaluate clinical usefulness of the derived score

(nomogram, prognostic score chart, decision

curve analysis)

If clinical decision making is in mind, also report

absolute metrics (ARD or NNT)

Effect estimation The weight between parsimony and complexity

varies according to the research question

At least calibration and discrimination ability of

the model should be reported; internal validation

is a plus

Explanatory: understanding the effect of predictors Always minimize continuous predictors

categorization

If clinical decision making in mind, also report

absolute metrics (ARD or NNT)

Adjustment for predictors in experimental design

to increase statistical precision

Multiple imputation if missingness>5%

Focus on the independent information provided

by one predictor (or explanatory variable)

Use MFP algorithm as the preferred selection

variable approach

Always keep present the EPV rule of thumb.

Group predictors in case of small sample size

(i.e. propensity score)

If sample size allows, model nonlinear relationship

of continuous predictors with no more than

4-5 degree of freedom (FPF or RCS). Final decision

should be based on the overall significance

(omnibus P-value)

As hypothesis generating study, test for interactions.

Keep interaction terms only when the omnibus

P-value is significant

ARD, absolute risk difference; EPV, number of events per variable; FPF, fractional polynomial function; MFP, multivariable fractional polynomial; NNT, number needed to

treat; RCS, restricted cubic splines.
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shape of the baseline hazard function is known by the researcher;

c) as a way to estimate the adjusted absolute risk difference (ARD)

and number needed to treat (NNT) at prespecified time points; d)

when the proportionality assumption for the explanatory variable

is not tenable,8 and e) when there is a need to extrapolate the

results beyond the observed data.

In survival analysis, each subject can experience one of the

several different types of events at follow-up. If the occurrence of

one type of event either influences or prevents the event of

interest, a competing risks situation arises. For example, in a study

of patients with acute heart failure, hospital readmission, the

event of interest, is prevented if the patient dies at follow-up.

Death here is a competing risk, preventing that this patient could

be readmitted. In a competing risks scenario, several studies have

demonstrated that the traditional survival methods, such as Cox

regression and Kaplan-Meier method (KM) are inappropriate.9

Alternative methods have been proposed, such as the cumulative

incidence functions and the proportional subdistribution hazards

model by Fine and Gray.10

In summary, consider these methods: a) when the event of

interest is an intermediate endpoint and the patient’s death

prevents its occurrence; b) when one specific form of death (such

as cardiovascular death) needs to be adjusted by other causes of

death, and c) to adjust for events that are in the causal pathway

between the exposure and the outcome of interest (usually a

terminal event). For instance, revascularization procedures may be

considered in this category by modifying the patient’s natural

history of the disease, and therefore, influencing the occurrence of

mortality.

Repeated Measures With Time-to-Event Endpoint

Many studies in biomedical research have designs that involve

repeatedmeasurements over time of a continuous variable across a

group of subjects. In cardiovascular registries, for instance,

information is obtained from patients at each hospitalization

and collected along their entire follow-up; this information may

include continuous markers, such as BNP, left ventricle ejection

fraction, etc. In this setting, the researcher may be interested in

modeling themarker across time, by determining its trajectory and

the factors responsible for it; or perhaps the effect of themarker on

mortality becomes the main interest; or themarker may be simply

used as a time-varying adjuster for a treatment indicated at

baseline. A frequent and serious problem in such studies is the

occurrence of missing data, which in many cases is due to a

patient’s death, leading to a premature termination of the series of

repeated measurements. This mechanism of missingness has been

called informative censoring (or informative drop-out), and

requires special statistical methodology for analysis.11–14 This

type of approach is called Joint modeling regression, and started

being implemented in standard statistical softwares.15,16

In a different setting, when the aim is to describe a process in

which a subject moves through a series of states in continuous

time, Multistate Markov modeling becomes the right analytical

tool.17,18 The natural history of many chronic diseases can be

represented by a series of successive stages, and with an

‘‘absorbing state’’ at the end of the follow-up (usually death).

Within this model, patients may advance into or recover from

adjacent disease stages, or die, allowing the researcher to

determine transition probabilities between stages, the factors

influencing such transitions, and the predictive role of each

intermediate stage on death.

DATA MANIPULATION

Not infrequently, the data require clean-up before fitting the

model. Three important areas need to be considered here:

1. Missing data. This is a ubiquitous problem in health science

research. Three types of missingness mechanisms have been

distinguished19:missing completely at random (MCAR),missing

at random (MAR) and not missing at random (NMAR) (Table 3).

Multiple imputation was developed for dealing with missing

data under MAR and MCAR assumptions by replacing missing

values with a set of plausible values based on auxiliary

information available on the data. Despite the fact that in most

cases the missing mechanism is untestable and seldom MCAR,

most contemporary statisticians are in favor of imputing

missing values with complex multiple imputation algorithms,

particularly when themissingness is equal to or greater than 5%.

2. Variables coding. Variables must be modeled under appropriate

coding. Try to collapse categories for an ordered variable if data

reduction is needed. Keep variables continuous, as much as

possible, since their categorization (or even worse, their

dichotomization) would lead to an important loss of prediction

information, to say nothing about the arbitrariness of the chosen

cutpoint. Therefore, in the case of variable dichotomization,

provide arguments on how the thresholdwas chosen, or if it was

based on an acceptable cutpoint in the medical field.

3. Check for overly influential observations. When evaluating the

adequacy of the fit model, it is important to determine if any

observation has a disproportionate influence on the estimated

parameters, through influence or leverage analysis. Unfortu-

nately, there is no firm guidance regarding how to treat

influential observations. A careful examination of the corre-

sponding data sources may be needed to identify the origin of

the influence.

Table 3

Missing Mechanisms

Mechanism Description Example Effects

MCAR Probability of missing not related either to

observed or unobserved data

Accidental loss of patient records by a fire.

Patient lost to follow-up because of new job

Loss of statistical power. No bias on

estimated parameters

MAR Given the observed data, the probability of

missingness does not depend on unobserved

data

Missingness related to known patient

characteristics, time, place, or outcome

Loss of statistical power and bias with CC

analysis on data with > 25% missingness.20

Bias can be minimized with the use of

multiple imputation (with missingness

between 10-50%)

NMAR The probability of missingness depends on

unobserved variables and/or missing values

in the data

Missingness related to the value of the

predictor, or characteristics not available in

the analysis

Loss of statistical power. Bias cannot be

reduced in this case, and sensitivity

analyses have to be conducted under

various NMAR assumptions

CC, completed case; MAR, missing at random; MCAR, missing completely at random; NMAR, not missing at random.
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MODEL BUILDING STRATEGIES

Variable selection is a crucial step in the process of model

creation (Table 1). Including in the model the right variables is a

process heavily influenced by the prespecified balance between

complexity and parsimony (Table 3). Predictive models should

include those variables that reflect the pattern in the population

from which our sample was drawn. Here, what matters is the

information that the model as a whole represents. For effect

estimation, however, a fitted model that reflects the idiosyncrasy

of the data is acceptable as long as the estimated parameters are

corrected for overfitting.

Overfitting is a term used to describe a model fitted with too

many degrees of freedom with respect to the number of

observations (or events for binary models). It usually occurs when

the model includes too many predictors and/or complicated

relations between the predictors and the response (such as

interactions, complex nonlinear effects) that may indeed exist in

the sample, but not in the population. As a consequence,

predictions from the overfitted model will not likely replicate in

a new sample, some selected predictors may be spuriously

associated to the response variable, and regression coefficients

will be biased against the null (over-optimism). In other words, if

you put too many predictors in a model, you are very likely to get

something that looks important regardless of whether there is

anything important going on in the population. There are a variety

of rules of thumb to approximate the sample size according to the

number of predictors. In linear multiple regression, a minimum of

10 to 15 observations per predictor has been recommended.21 For

survival models, the number of events is the limiting factor (10 to

15).22 For logistic regression, if the number of non-events is smaller

than the number of events, then it will become the number to be

used. In simulation studies, 10 to 15 events per variable were the

optimal ratio.23,24

Additional measures have been proposed to correct for over-

fitting: a) use subject matter expertise to eliminate unimportant

variables; b) eliminate variables whose distributions are too

narrow; c) eliminate predictors with a high number of missing

values; d) apply shrinkage and penalization techniques on the

regression coefficients, and e) try to group, by measures of

similarity, several variables into one, either by using multivariate

statistical techniques, an already validated score, or an estimated

propensity score.

Automatic Selection of Variables

Most statistical software offers an option to automatically

select the ‘‘best model’’ by sequentially entering into and/or

removing predictor variables. In forward selection, the initial

model comprises only a constant, and at each subsequent step the

variable that leads to the greatest (and significant) improvement in

the fit is added to the model. In backward deletion, the initial

model is the full model including all variables, and at each step a

variable is excluded when its exclusion leads to the smallest

(nonsignificant) decrease in the model fit. A ‘‘combination’’

approach is also possible, which begins with forward selection

but after the inclusion of the second variable it tests at each step

whether a variable already included can be dropped from

the model without a significant decrease in the model fit. The

final model of each of these stepwise procedures should include a

set of the predictor variables that best explains the response.

The use of stepwise procedures has been criticized on multiple

grounds.2,24–27 Stepwise methods frequently fail by not including

all variables that actually have influence on the response, or by

selecting those with no influence at all. Relaxing the P = .05 value

used as the stopping rule improves the selection of important

variables in small datasets.1 Stepwise procedures have also been

associated with icreased probability of finding at least one of the

variables significant by chance (type I error), due to multiple

testing and no error-level adjustment. A forward selection with

10 predictor variables performs 10 significance tests in the first

step, 9 significance tests in the second step, and so on, and each

time includes a variable in the model when it reaches the specified

criterion. In addition, stepwise procedures tend to be unstable,

meaning that only slight changes in the data can lead to different

results as towhich variables are included in the finalmodel and the

sequence in which they are entered. Therefore, these procedures

are not appropriate for ranking the relative importance of a

predictor within the model.

To overcome the drawbacks associated with stepwise proce-

dures, Royston28 has developed a procedure called multivariable

fractional polynomials (MFP), which includes two algorithms

for fractional polynomials model selection, both of which combine

backward elimination with the selection of a fractional poly-

nomials function for each continuous predictor. It starts by

transforming the variable from the most complex permitted

fractional polynomials,and then, in an attempt to simplify the

model, reduces the degree of freedom toward 1 (or linear). During

this linearization process, the optimal transformation of the

variable is set by statistical testing. It has been claimed that

the default algorithm resembles a closed-test procedure by

maintaining the overall type I error rate at the prespecified

nominal level (usually 5%). The alternative algorithm available in

MFP, the sequential algorithm, is associated with an overall type I

error rate about twice that of the closed-test procedure, although it

is believed that this inflated type I error rate confers increased

power to detect nonlinear relationships.

Other sophisticated alternatives have been proposed to

improve the process of variable selection, such as best subset

regression,29 stepwise techniques on multiple imputed data,30,31

using automated selection algorithms that make appropriate

corrections, such as the LASSO (least absolute shrinkage and

selection operator) method,32 and maximum likelihood penaliza-

tion.33

Recently, the use of bootstrap resampling techniques has been

advocated as a means to evaluate the degree of stability of the

models resulting from stepwise procedures.34–37 Such bootstrap

samples mimic the structure of the data at hand. The frequency of

the variables selected in each sample, called bootstrap inclusion

fractions (BIF), could be interpreted as criterion for the importance

of a variable. A variable that is weakly correlated with others and

significant in the full model should be selected in about half of

bootstrap samples (BIF�50%). With lower P-values, the BIF

increases toward 100%.

FINAL MODEL EVALUATION

Central to the idea of building a regression model is the

question of model performance assessment. A number of model

performance metrics have been proposed, although they can be

grouped in two main categories: calibration and discrimination

measures (Tables 1 and 3). Independent of the aim for which the

model was created, these two performance measures need to be

derived from the data which gave origin to the model, or even

better, through bootstrap resampling (known as internal validity).

With bootstrapping, it is possible to quantify the degree of over-

optimism and the amount of shrinkage necessary to correct the

model’s coefficients. However, if the goal is to evaluate themodel’s

generalizability, a crucial aspect in prediction models, then these

performance measures need to be estimated on external data.
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However, this is not always possible due to lack of resources. For a

comprehensive review of this topic, refer to ‘‘Clinical Prediction

Models’’ by Steyerberg.38

Calibration refers to the agreement between observed out-

comes and model predictions. In other words, it is the ability of

the model to produce unbiased estimates of the probability of the

outcome. The most common calibration measures are calibration-

in-the-large, calibration slope (both derived from calibration

plots), and the Hosmer-Lemeshow test (or its equivalent for Cox

regression, the Gronnesby and Borgan test39).

Discrimination is themodel’s ability to assign the right outcome

to a randomly selected pair of subjects; in other words, it allows

the model to classify subjects in a binary prediction outcome

setting. The area under the ROC curve (AUC) is the most common

performance measure used in the evaluation of the discriminative

ability for normal-error models with a binary outcome. The

equivalent for censored data is the C-statistic.40

In the context of translational research (omics & biomarkers

era), the evaluation of the added predictive value for a predictor is

perhaps as important as the validation of the prediction accuracy of

the model as a whole. Several approaches have been proposed, the

most important being net reclassification improvement, integrated

discrimination improvement,41,42 and decision curve analysis.43

In summary, a good model calibration and discrimination,

evaluated through bootstrapping, is currently considered an

important prerequisite for the application of any predictionmodel,

assuming that independent data testing is not feasible.

RESULTS PRESENTATION

The final consideration in the process of model creation is how

the estimated parameters will be presented. Commonly, the

statistical packages, when comparing two groups on a binary

outcome, express the effect size of the explanatory variable in

relativemetrics. For logistic and Cox regressions, the OR andHR are

the traditional metrics to indicate the degree of association found

between a factor and the outcome. Because these are a ratio of

proportions, the information conveyed about their effect size is

relative to each other. Similarly, in randomized controlled trials,

the relative risk, which is no more than a ratio of proportions, is

often used to summarize the association between the intervention

and the outcome. The main limitation inherent to these relative

measures is that they are not affected by variations in baseline

event rate. For instance, in Cox regression the HR does not take into

account the baseline hazard function, and thusmust be interpreted

as a constant effect of the exposure (or intervention) during the

follow-up. As such, there is a concern that relative measures

provide limited clinical information, while absolute measures, by

incorporating the information about the baseline risk of the event,

will be more relevant for clinical decision making.

The most common absolute measures are: ARD and NNT. It

must follow that NNT is just a reciprocal of the ARD. Because of

randomization, in randomized controlled trials it is relatively

straightforward to estimate the ARD as simply the difference in the

outcome proportions, measured at the end of the trial, between

treated and untreated subjects. Evenwhen the outcome is time-to-

event in nature, the differences in survival probabilities can be

estimated at different durations of follow-up with the KM survival

curves.44 However, with observational studies, subjects in the

2 groups of the exposure variable often differ systematically in

prognostically important baseline covariates, which in turn leads

to the application of statistical methods that allow the calculation

of adjusted ARD (and NNT).45

In summary, in observational cohort studies, ARD and NNT can

be derived from adjusted logistic and Cox regression models, and

as much as possible such measures should supplement the

reporting of the traditional regression estimates.
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