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Risk Assessment Following ST-segment Elevation Myocardial Infarction

Evaluación del riesgo tras infarto de miocardio con elevación del segmento ST
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A lot of emphasis on providing prompt recognition and

immediate therapy in patients presenting with ST-segment

elevation myocardial infarction (STEMI) has been put forth by

guidelines from the European and American Cardiology Societies

center. These recommendations are in place in order to limit the

extent and severity of irreversible myocardial injury. In fact, much

of the gains in short-term and long-term reduction in mortality

following STEMI, stems from prompt reperfusion to limit the

immediate myocardial infarct size and to promote long-term

myocardial healing. However, despite recent advances and

adherence to guidelines, there remains an elevated morbidity

and mortality following acute myocardial infarction.

Predicting the prognosis of patients during the convalescence

stage remains tricky, but it has been long recognized and well

established that determination of left ventricular (LV) function is an

important determinant of survival. Current clinical practice and

guidelines recommend obtaining an assessment of the left

ventricular ejection fraction (LVEF), frequently performed using

transthoracic echocardiography. This remains currently true

despite continued modern advances including thrombolytics,

primary percutaneous reperfusion, antiplatelets, lipid-lowering,

beta-blockers, and angiotensin-converting enzyme (ACE) inhibi-

tors. It is this simplicity in obtaining the LVEF—and the indirect

measure of the acute infarct burden on the myocardium—that

targets therapy to help reduce heart failure readmissions and

cardiac death.

Acute LV dysfunction can be potentially reversible by myocardial

salvage secondary to reperfusion, although LV dysfunction can

continue for days to weeks due to the presence of stunned

myocardium. Therefore, the presence of severe LV dysfunction

can be a poor surrogate for the amount of irreversibly injured

myocardium that is present.1 Hence, automated implantable

defibrillators are not recommended until after a 40-day waiting

period even if a patient’s LV function is very dysfunctional and below

35% within the first weeks after acute myocardial infarction. In

addition, ACE inhibitors are only strongly advised if the LVEF

functioning is below 40%. In a recent meta-analysis of ACE-inhibitor

use following STEMI, the readmission rate for heart failure was

20% lower in the ACE inhibitor treated group when compared with

the placebo group (13.7% for patients receiving ACE inhibitors vs

18.9% in the placebo group). In fact, in patients following acute

myocardial infarction, ACE-inhibitor therapy resulted in the greatest

reduction in death, heart failure readmissions, or repeat myocardial

infarction only in those with severely reduced LVEF.2 However,

despite these efforts, adverse ventricular remodeling continues to

occur and recent estimates note that mortality following STEMI

remains elevated.3

Cardiovascular magnetic resonance (CMR), over the last decade,

has increasingly become a popular method to assess patients

following acute myocardial infarction due to its high spatial

resolution and comprehensive ability to assess myocardial function,

perfusion, or other sequelae following acute myocardial infarc-

tion. In particular, because of the high natural contrast between

myocardial tissue, blood pool, and surrounding lung tissue, CMR

has become increasingly compelling not only as a research tool

but also as a clinically important noninvasive tool in the

cardiologist’s armamentarium. The determination of LV volumes,

ejection fraction, and mass, has great reproducibility with limited

artifacts and without the limitations of poor echocardiographic

windows.

But beyond the simple measurement of LV volumes, CMR

possesses the unique ability to assess areas of myocardial

infarction both following acute infarct and chronic scar by late

gadolinium enhancement (LGE) imaging. Early studies revealed a

close correlation between LGE-determined infarct and other less

specific markers including LV volumes, wall motion, and ejection

fraction. Infarct size directly correlates with LVEF within a few

months following reperfused STEMI.4 In fact, LGE can be a more

specific marker for determining the extent of irreversible

myocardial damage for an individual patient as LVEF is influenced

both by residual stunning in a viable myocardium and the necrotic,

nonviable myocardium.

Many studies have investigated a myriad of CMR parameters

that can be obtained within a single study, including ventricular

volumes and function, infarct size, myocardial edema, myocardial

salvage, myocardial perfusion, and microvascular obstruction.

These parameters have been evaluated in single center studies and

have been shown as independent predictors of prognosis.

However, in the article published in Revista Española de Cardiologı́a,
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Merlos et al.5 sought to assess the independent contribution

of each of these CMR indices, adjusted for clinical risk factors, in

long-term prognosis following STEMI. Over a 2-year period,

206 consecutive patients presented for a comprehensive CMR

evaluation following prompt, contemporary primary reperfusion

with either primary angioplasty or a pharmaco-invasive strategy

for a STEMI. This prospective cohort of patients was followed for a

median of 51 months for a composite endpoint of cardiac death,

nonfatal myocardial infarction and readmission for heart failure.

Thirty-nine major adverse cardiac events (MACE) were detected in

29 patients. This cohort was one of the larger single center studies

to investigate long-term prognosis in a group of patients following

STEMI, and included a comprehensive CMR evaluation that

included several quantitative indices: a) LV end-diastolic volume

index; b) LV end-systolic volume index; c) LVEF; d) LV mass;

e) LVEF with low-dose dobutamine; f) LV infarct size; g) LV edema;

h) LV salvage index, and i) LV microvascular obstruction.

Additionally, these indices were compared with semiquantitative

equivalents scored on a 17-segment model including: a) resting

wall motion abnormality; b) wall motion abnormality with low-

dose dobutamine; c) transmural necrosis >50% of the wall;

d) presence of edema; e) resting first-pass perfusion defect, and

f) presence of persistent hypoperfusion on LGE. In a multivariate

analysis which included 11 clinical variables and 15 CMR variables,

the authors concluded that in addition to age and elevated heart

rates, the transmural extent of infarct was the only CMR index that

independently predicted MACE outcome. Moreover, the C-statis-

tics increased from 0.75 to 0.83, demonstrating the improved

predictive value of obtaining the transmural extent of infarct

beyond traditional clinical risk predictors.

The fact that a simple index, available by visual analysis, can

provide powerful prognostic information and might outperform

more time-consuming indices based on tedious manual segmenta-

tion, is certainly an intriguing finding. However, these results must

be interpreted within the context of the study limitations.

The optimal infarct sizing technique by LGE remains somewhat

controversial. Current quantitation methods of the LGE include

manual planimetry of ‘‘bright’’ pixels or setting a signal intensity

threshold cutoff as compared to a normal myocardium. This is

defined either as multiple standard deviations above the mean

signal of normal myocardium or 50% of the maximum intensity

within the infarct tissue, ie, full-width at half maximum intensity.

Several studies have demonstrated that a threshold of 2 standard

deviations above normal overestimates infarct size,6 and that a

higher threshold or use of full-width at half maximum intensity

is more appropriate. It is possible that the inclusion of noninfarcted

myocardium with pixel intensities 2 standard deviations above

the mean may have negatively influenced the performance

of the quantitative technique.

Many investigators divide the myocardium into 17 segments to

grade the extent and severity of LGE, and advocate for this

approach. Segments are then graded on a scale describing the

transmural extent of LGE through each segment, and the scored

segments can be summed to estimate the infarct size. A major

advantage of this semiquantitative approach is that it saves time as

compared with fully quantitative techniques. Although the

segmentation can be increased to 72 segments, as originally

described by Kim et al.,7 this requires a longer analysis time while

theoretically providing a more accurate infarct-size estimation. As

segmentation is likely an estimation of a quantitative analysis,

another potential explanation for why the qualitative analysis

would trump the quantitative analysis, in the current study by

Merlos et al.,5 may be that the 2 variables are collinear, which may

bias the results of multivariable modeling.

Beyond evaluating the size of infarction, the integrity and

maintenance of microvascular perfusion during acute infarction

can be important. Microvascular obstruction can be assessed using

different CMR methods, such as a delayed wash-in of gadolinium

contrast during first-pass perfusion or the persistent absence of

gadolinium enhancement within the infarct core on LGE.8 As with

the other CMR predictors, Merlos et al.5 also demonstrated that

first-pass hypoperfusion and LGE microvascular obstruction were

both independent predictors of MACE. Additionally, the presence

of microvascular obstruction has been associated with larger

infarct sizes, lower LVEF, worse functional recovery, and greater

myocardial thinning. Previous publications by Wu et al.9 and

Hombach et al.10 found that microvascular obstruction was a

stronger predictor of prognosis than infarct size, which contrasts

the current findings by Merlos et al.5 These differences are

important and deserve further investigation.

As acknowledged by the authors, despite the relatively large

number of patients recruited into this single center study, the

total number of events used for statistical modeling was only 29: 8

cardiac deaths, 11 nonfatal myocardial infarctions, and 10 read-

missions for heart failure. As a general rule of thumb, a minimum of

10 events is recommended per variable included in the model. Even

with the extended follow-up period, the small total number of

events limits the number of variables that can be confidently

investigated without increasing bias and variability.11 The MACE

rate of 14% in the current study is on par with previous studies

investigating CMR in STEMI populations: Hombach et al. (110

subjects, 15% MACE, 16 events, 7 deaths)10; Wu et al. (122 subjects,

13% MACE, 16 events, 1 death)4; Cochet et al. (184 patients, 24%,

44 events, 5 deaths)12; de Waha et al. (438 patients, 16% MACE, 69

events, 25 deaths)13; and Klug et al. (107 patients, 25% MACE,

27 events, 7 deaths).14

The ultimate goal is to understand the additive prognostic value

of CMR indices over established clinical variables, but a low number

of events have limited the number of important clinical and CMR

variables that could be confidently evaluated to date in CMR studies

of patients following STEMI. Merlos et al.5 provide a longer-term

follow-up than previous studies and utilize a truly comprehensive

CMR protocol which adds low-dose dobutamine wall motion

assessment, resting first-pass perfusion, and edema assessment to

the standard LGE CMR protocol. Univariable analysis provides

further evidence of the prognostic importance of LVEF, infarct size,

wall motion abnormalities, edema size, and the extent of transmural

infarction on subsequent cardiac events. To fully realize the

potential prognostic value of CMR indices, a larger number of

STEMI patients will need to be evaluated to achieve the requisite

number of MACE endpoints. This could be achieved by pooling

together data from multiple sources including data from single

center studies15 or from multicenter registries (Euro CMR registry.)

This could provide the adequate statistical power to assess

important CMR parameters and deliver more concrete evidence

for the added prognostic value of CMR indices in patients following

an acute myocardial infarction. Although the measurement of LVEF

currently remains vital in the patient’s post-infarction care, the

cornerstone goal of STEMI therapy primarily aims to reduce the

amount of infarcted tissue. CMR should play an increasingly central

role in determining the true infarct size and extent with an eye

towards reducing heart failure readmissions and cardiac death.
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