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a Servei de Cardiologia, Institut d’Investigació Sanitària Illes Balears (IdISBa), Hospital Universitari Son Espases, Palma de Mallorca, Balearic Islands, Spain
bCentro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
c Facultad de Medicina, Universitat de les Illes Balears (UIB), Palma de Mallorca, Balearic Islands, Spain
dMedical Statistics Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
e Servei de Cardiologia, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain

INTRODUCTION TO SURVIVAL ANALYSIS

This article provides an overview of survival analysis in

cardiovascular research and aims to provide a practical tool to

understand the range of statistical approaches to tackle time-to-

event outcomes. We briefly describe features of survival time data

and provide an overview of several analytical approaches. For a

better understanding, we will illustrate how these methods have

been applied to data from cardiovascular studies. This review is

primarily descriptive in content, and consequently no prerequisite

mathematical, or statistical background are necessary. Basic

concepts are summarized in figure 1.

What is survival analysis?

Survival analyses are applicable when the measure of interest is

time until the occurrence of an event (time-to-event outcomes).

Despite using the word ‘‘survival’’, the event or outcome can be

fatal or nonfatal (eg, cardiovascular mortality or myocardial

infarction, respectively).1 The time at which the event occurs is

referred to as an event time, survival time, or failure time. The last
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A B S T R A C T

This review provides a practical guide to the essentials of survival analysis and their reporting in

cardiovascular studies, although most of its key content can be extrapolated to other medical fields. This

is the first in a series of 2 educational articles laying the groundwork to address the most relevant

statistical issues in survival analyses, which will smoothly drive the reader from the most basic analyses

to the most complex situations. The focus will be on the type and shape of survival data, and the most

common statistical methods, such as nonparametric, parametric and semiparametric models. Their

adequacy, interpretation, advantages and disadvantages are illustrated by examples from the field of

cardiovascular research. This article ends with a set of recommendations to guide the strategy of survival

analyses for a randomized clinical trial and observational studies. Other topics, such as competing risks,

multistate models and recurrent-event methods will be addressed in the second article.
�C 2021 Sociedad Española de Cardiologı́a. Published by Elsevier España, S.L.U. All rights reserved.

Análisis de supervivencia en investigación cardiovascular (I): lo esencial

Palabras clave:

Análisis de supervivencia

Enfermedad cardiovascular

Metodologı́a

R E S U M E N

Esta revisión establece una guı́a práctica que comprende los conceptos básicos de los análisis de

supervivencia y su aplicación en el estudio de las enfermedades cardiovasculares, si bien gran parte del

contenido puede extrapolarse a otras ramas de la medicina. Este es el primero de dos artı́culos

académicos que sientan las bases para abordar las principales cuestiones metodológicas empleadas en

estudios de supervivencia, y guı́an al lector desde los análisis más básicos hasta los más complejos. Esta

revisión se centra en el tipo y la forma de los datos de supervivencia, ası́ como en los métodos estadı́sticos

más utilizados, como las pruebas no paramétricas, paramétricas y semiparamétricas. La interpretación y

la valoración de la idoneidad de dichos métodos, ası́ como sus ventajas e inconvenientes, se ilustran con

estudios del ámbito de las enfermedades cardiovasculares. El artı́culo concluye aportando un conjunto

de recomendaciones para guiar la estrategia del análisis de supervivencia, tanto en el contexto de un

ensayo clı́nico aleatorizado como en el de estudios observacionales. En la segunda revisión se abordarán

temas como el modelo de riesgos competitivos, el modelo de eventos recurrentes y los modelos

multiestado.
�C 2021 Sociedad Española de Cardiologı́a. Publicado por Elsevier España, S.L.U. Todos los derechos reservados.
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2 terms arose from the statistical methods developed for data

analysis in cancer trials and for quality testing in manufacturing,

respectively. Despite the term, the event under study is not

necessarily a failure with negative connotations, meaning it could

well be a positive event, such as appropriate implantable

cardioverter defibrillator discharges.2

The survival time for each individual is the time from the

starting point until the occurrence of the event of interest.1,3 In a

randomized clinical trial (RCT), survival time is usually estimated

from the randomization (usually occurring at the start of the

intervention).4 In an observational study, survival time is more

commonly calculated from entry into the study, from a particular

fixed date, such as the date when participants are first exposed to a

risk factor (eg, chemotherapy) or to an index event (eg, acute

coronary syndrome [ACS]).5 Sometimes it is also calculated from an

age point.

Sources of survival data

There are 2 main sources of survival data in cardiovascular

research: RCTs and observational studies.

In RTCs, the aim is usually to provide reliable evidence of

treatment efficacy (or effectiveness), and safety. The simplest

example involves individuals meeting the entry criteria, who are

randomized to the intervention or the control group and followed

up for a given time to collect events and time to events. For

example, the REBOOT trial (NCT03596385) is randomizing patients

with acute myocardial infarction and left ventricular ejection

function � 40% to receive either standard treatment with beta-

blockers or not who will be followed up for a median period of 2.75

years to assess differences in the incidence of the composite

endpoint of all-cause death, nonfatal reinfarction, or heart failure

hospitalization.

In prospective observational studies (cohort studies), individu-

als differing in a primary exposure factor are recruited to a cohort

and followed up for a range of different times, in order to compare

time-to-event outcomes in those exposed and not exposed to the

factor.6 The EPICOR (l Long-term follow-up of antithrombotic

management patterns in acute coronary syndrome patients)

registry is an international cohort study, which recruited post-

discharged patients with an ACS who were followed up for 2 years

for a variety of outcomes.7 Its entry time (time zero) was fixed at

discharge after an index event (ACS), and the events collected over

follow-up were other cardiovascular events (such a recurrent ACS)

and fatal events. The EPICOR registry has been used to evaluate

differences in all-cause mortality across a variety of exposures,

such as the geographic origin of the participants,8,9 or whether

they underwent coronary revascularization.5

In addition to RCTs and observational studies, other data

sources for survival data that can be used, such as registries of

administrative data. In Spain, the Spanish Minimum Data Set has

been used to describe temporal trends and in-hospital complica-

tions of several cardiovascular conditions.10 However, their cross-

sectional nature makes any time-to-event analysis impossible.

Features of survival data: uninformative censoring

A key analytical problem in longitudinal studies (either RCTs or

observational) is that the time to the event of interest may be

censored, which means that for some participants the follow-up

may not be complete and hence, the event is not observed to

happen. There are generally 3 reasons why censoring may occur

during the study period of a given RCT evaluating major adverse

cardiac events (MACE): a) the event might not be recorded for

patients who are still alive at the end of follow-up; b) participants

lost to follow-up after a certain date (eg, migration); and c) those

who died from a different cause (eg, cancer). In any of these

situations, the actual survival time (eg, time to MACE) is unknown.

It would be inappropriate to exclude such individuals from the

analyses, since the fact that they did not experience MACE while

they were in the study provides some information about survival.

Of note, we only observe a time up to which we know they have not

had the outcome at the ‘‘right side’’ of the follow-up period (a

phenomenon known as right-censoring).1

The concept of censoring makes survival methods unique. For

each patient we have 2 pieces of data: a) a time that is either the

patient’s event time, or the time at which the patient was last

followed up; and b) an indicator that denotes whether the time is

an event time or a censoring time. In other words, each patient has

either an event time or a censoring time after which the patient

would no longer be observed. It will be assumed throughout most

of this review that censoring is uninformative about event times.1

This means that the time at which an individual is censored, or the

fact that he or she is censored is not related to our time-to-event

outcome. If a patient enrolled in an RCT drops out of the study, due

to reasons related to the study (eg, participants in the intervention

arm feeling better or having adverse effects) the censoring then

becomes informative.

Violating this statistical assumption challenges the principles of

the main approaches for survival data.11 Methods to address

censoring due to a competing event (eg, death from another cause)

will be discussed in our second review.

Key concepts in survival distributions

Two relevant functions are needed to understand and describe

survival distributions. The survival function, S(t), is defined as the

probability that a person ‘‘survives’’ beyond any specified time (or

t), whereas the hazard function, h(t), is defined as the instanta-

neous failure rate. The hazard function is a conditional failure rate

(conditional to those who have survived until time t). For instance,

in a study assessing MACE, the function at year 2 only applies to

those who were event-free in year 2, and does not take into account

those who had MACE before year 2. Note that, in contrast to the

survival function, which focuses on not failing, the hazard function

focuses on failing, that is, on the event occurring.

The hazard ratio (HR) is a measure of effect/association widely

used in survival analyses. In its simplest form, the HR can be

interpreted as the chance of an event occurring in the treatment

arm (or exposed group) divided by the chance of the event

occurring in the control arm (or unexposed group), of an RCT (or an

observational study). The HR summarizes the relationship

between the instantaneous hazards (or event rates) in the 2 groups.

The HR is estimated using regression-type analyses.

Aims and approaches of survival analyses

Most clinical studies focus on evaluating the impact of an

intervention (eg, beta-blockers) or exposure (eg, geographic origin)

on an outcome of interest (eg, MACE). In the setting of survival

Abbreviations

ACS: acute coronary syndrome

CPH: Cox proportional hazards

MACE: major adverse cardiac events

PH: proportional hazards

RCT: randomized clinical trial
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analyses, the outcome of interest is the survival time, and the focus

is on either comparing survival times between treatment groups,

or assessing the association between survival times and exposed vs

nonexposed participants.

Methods for survival data need to account for censoring and the

fact that survival times are strictly nonnegative and commonly

skewed to the right. If censored observations were excluded from

the analysis, the results would be biased, and the estimates would

be unreliable. Three basic approaches are presented in this review:

Nonparametric methods. These relatively simple methods (eg,

Kaplan-Meier estimates) do not make assumptions about the

distribution of survival times. They are excellent for univariate

Figure 1. Basic concepts defining survival analyses. List of basic terminology in survival methods. PH, proportional hazard.
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analyses (eg, primary outcome in RCTs), but not sufficient to

handle more complex problems, such as confounding in observa-

tional studies.

Fully parametric methods. These are regression-type analyses for

survival data (eg, Weibull model), which are analogous to

regression approaches for other types of response (eg, linear

regression for continuous data, or logistic regression for a binary

response). Nevertheless, they rely on some assumptions about the

patterns of survival times, which should be carefully investigated.

Semiparametric methods. These lead to another regression-type

analysis for survival data, often called Cox regression. The way

survival times are associated with exposures of interest is

parametrized, although they leave part of the full distribution of

the survival times unspecified.

NONPARAMETRIC ANALYSIS OF SURVIVAL DATA

Nonparametric techniques do not make any assumptions about

the distribution of survival times, which makes sense since

survival data have a skewed distribution. The most common

nonparametric approach for modeling the survival function is the

Kaplan-Meier estimate. This method uses the actual observed

event and censoring times.

Why use nonparametric methods?

Nonparametric methods are an appropriate starting point for

most survival analyses. First, these methods allow estimation of

survivor and hazard functions without the need to make

parametric assumptions. Second, they provide a highly intuitive

way of graphically displaying survival data, taking into account

censoring data. Third, these techniques are optimal to compare

survival time by groups of individuals (categorical variables).

Finally, nonparametric methods can be used to provide informa-

tion about whether some model assumptions can be made in more

complex approaches of survival data (eg, proportional hazards

assumption).

Estimating the survival function: the Kaplan-Meier method

The simplest way to obtain an estimate of the survival function

is by calculating the cumulative survival experienced by the

participants included in a cohort. This can be achieved using the

Kaplan-Meier method, which estimates the cumulative survival

(and failure) probabilities every time a participant leaves the study.

The Kaplan-Meier estimate is also known as the ‘‘product limit

estimate’’. This approach is based on conditional probabilities and

is thoroughly explained in figure 2.

Another nonparametric approach is the life-table estimate of

the survival function. For the Kaplan-Meier estimate, a discrete

time setting is assumed (all survival times are observed at an exact

time). Sometimes this piece of information is less precise and

survival times are observed within a time range. A typical example

is the evaluation of the number of deaths per year in a study

population. In this setting, the life-table method is still popular in

that it provides a simple summary of survival data in large study

populations within time intervals.12

Recommendations for displaying Kaplan-Meier plots

Kaplan-Meier plots are presented in almost all articles

reporting survival analyses. Because of their prevalence, it is

important to provide some suggestions for their appropriate

representation. A poorly graphed Kaplan-Meier curve can lead to

an erroneous interpretation by readers. In a landmark article

published around 20 years ago, Pocock, Clayton and Altman

examined the survival plots shown in 35 RCTs and suggested some

key recommendations to consider when presenting Kaplan-Meier

plots.3 In most cases, survival plots are best presented going

upwards (cumulative proportion experiencing the event) rather

than downwards (cumulative proportion free of the event).

Usually, upward plots highlight relative differences, because the

x-axis can be adapted to the scale of the curves. Instead, downward

plots (using the whole vertical axis from 0 to 100%) make

differences look much less pronounced and mainly emphasize

differences in absolute terms. Therefore, a break in the y-axis

should be avoided. Overlooking such a break may lead the reader to

a mistaken perception of the potential treatment effect (or

association), which would seem larger than the real difference.

Ideally, plots should include some measure of statistical uncer-

tainty—the standard error (or 95% confidence interval) for the

estimated proportion of patients with (or without) the event can be

calculated at any timepoint. In the rare cases when this uncertainty

is presented, there is an increasing size of the standard error (or

95% confidence interval) bar over time, which illustrates the

decreasing number of participants at risk in the follow-up. Finally,

plots should extend in time as far as there are a sufficient number

of participants in the study and the number of participants at risk

remaining in the study should be shown below the x-axis. If there

is a large decline in the number of participants during the course of

the study, then caution should be exercised when interpreting

differences between the curves in the right-hand side of the graph.

These recommendations are illustrated in figure 3 with examples

from articles published in Revista Española de Cardiologı́a.13–17

The log-rank test to compare survival times in 2 groups

The log-rank test is used to compare the survival distributions

of 2 or more groups. This nonparametric test, which only assumes

the censoring to be noninformative, is based on a very simple idea:

comparing observed vs expected events in each group. For the

comparison of 2 groups (eg, testing the null hypothesis that the

survival experience is the same for patients randomized to beta-

blockers and control patients), we calculate the number of

expected events in each group with the usual formula for 2x2

tables, for each time interval. The test will be carried out by

comparting the sum of these ‘‘table-specific’’ expected values with

the total observed events. If the observed numbers statistically

differ from those expected, we may assume that the difference in

the 2 groups is not happening at random. This approach can be also

applied to explanatory variables with more than 2 groups,

although the test statistic is more complex to calculate manually

and its statistical power decreases as the number of comparisons

increases.

Limitations of nonparametric methods

Nonparametric methods for analyzing survival data are widely

used, though they are not exempt from major limitations. They do

not allow using continuous factors as dependent variables (it

should be categorized to estimate hazards for people falling into

different categories). Following the same reasoning, analyses

involving several exposure variables, which may be binary

continuous or categorical, are not possible unless each patient is

categorized into a single category (eg, for 2 factors with

3 categories, there will be 6 groups). This approach usually ends

with small groups limiting any formal comparison. Even more

importantly, there is no way to adjust for potential confounders,
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but to look separately at groups defined by the confounder (hence

these methods quickly become cumbersome and the groups too

small for meaningful analysis). Taking all these limitations into

account, a more advanced approach by using regression modeling

can be applied to handle survival data.

PARAMETRIC REGRESSION MODELING

Regression modeling is about establishing a mathematical

model for the survival times, which defines how survival times

depend on individual exposures (or randomized allocations). It is

analogous to the use of other regression-type analyses, such as

linear regression to study the dependence of continuous response

variables on explanatory variables, or logistic regression to study

the dependence of a binary outcome on explanatory variables.

Regression models for survival data can be parametric or semi-

parametric18–20 and both provide a measure of effect known as HR.

The models presented in this section are described as parametric,

because they assume a particular shape for the distribution of the

survival times which depends on defined parameters. In other

words, survival times are assumed to follow a known distribution.

Figure 2. How to build a Kaplan-Meier curve and estimate its survival function. A: in this example, we created a basic data set of 10 patients with a follow-up of

30 days. All of them are ‘‘at risk’’ of having the event at time 0. Five patients have the event (days 5, 10, 25, 25, and 30), whereas 5 patients have censored data:

4 patients are lost to follow-up (2 at day 15 and 2 at day 25), and only 1 patient finishes the follow-up without an event (censored at day 30). B: estimate of the

survival function using the Kaplan-Meier method. C: interpretation of cumulative survival probabilities. As occurs with this example, the Kaplan-Meier survival

estimate sometimes takes the form of a step plot rather than a smooth curve, reflecting the fact that this is an empirical estimate of the survival experience of a

cohort at each time point. Importantly, censored observations do not reduce cumulative survival, but rather adjust the number at risk for when the next death

occurs.
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Why use parametric regression modeling for survival data?

Choosing a theoretical distribution to approximate survival

data is as much an art as a scientific task, and regression modeling

is going to be always a simplistic way to summarize the reality.

Parametric models assume that the survival and hazard functions

have a specific distribution which is often too structured and

sometimes unrealistic for use with real data.21 It is hard to isolate

all potential causes that can lead to an event at a particular time,

and to account mathematically for all of them. Nevertheless, there

are some potential scenarios where it is appropriate to use

parametric models.

The exponential model

The most basic parametric model for survival time is the

exponential distribution, which is a form of the survival distribu-

tion characterized by a constant hazard function. According to this

model, having a failure (or event) is a random event independent of

time. The exponential distribution, often referred to as a purely

random failure pattern, is well-known for its ‘‘lack of memory’’

which means that a subject’s probability of an event in the future is

independent of how long the subject has gone without an event.1

The exponential distribution is characterized by having a

single parameter (l), a constant hazard rate. Hence, a high

Figure 3. A-E: 5 examples of different ways to display Kaplan-Meier curves. Reproduced with permission from Elsevier and Revista Española de Cardiologı́a. The

source of each plot is displayed below each Kaplan-Meier plot and full references are shown in the reference list.13–17 AA, aldosterone antagonist; MACE, major

adverse cardiac events.
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l value indicates high risk and short survival, whereas a low l
value indicates low risk and long survival.18 Exponential models

are rarely used in the cardiovascular field, but it has been applied in

other areas, such as cancer22 or smoking cessation.23

The Weibull model

In many scenarios, it would not be reasonable to assume a

constant hazard rate over time,18 as under the exponential

distribution. An alternative approach is to consider the

Weibull distribution to parametrize survival times. Unlike the

exponential distribution, it does not assume a constant hazard rate

(hazard function is increasing or decreasing over time) and

therefore has more flexibility, and a broader application. This

method can be used when the hazard function in monotonically

increasing or decreasing, and therefore is characterized by

2 parameters: the scale parameter l (the same than for the

exponential distribution), and the shape parameter g, determining

the shape of the distribution curve.24 By adding a shape parameter,

the distribution becomes more flexible and can fit more types of

data (with increasing, decreasing, or constant risk). A value of l
< 1 indicates that the failure rate decreases over time, whereas if

l > 1 the failure rate increases with time. When the scale

parameter (l) equals 1, the failure rate is constant over time

(Weibull reduces to an exponential model).

The reality about parametric regression modeling

Parametric regression models produce smooth predictions by

assuming a functional form of the hazard and by directly

estimating absolute and relative effects.24 In addition to the

exponential and Weibull models, there are other parametric

models (eg, Gompertz, Lognormal, etc.),18 but they fail beyond the

scope of this review because the use of parametric modeling for

survival data is relatively rare in cardiovascular research.

Nevertheless, some recent examples can be found. In 2 recent

publications from major RCTs, the Weibull regression model has

been used to evaluate time to discontinuation to treatment

allocation for informative reasons (eg, death).25,26 In the ENDUR-

ANCE trial, which compared a small centrifugal-flow left ventricu-

lar assist device to an axial-flow left ventricular assist device in

patients with advanced heart failure who were ineligible for heart

transplantation, the Weibull model was used for the primary

endpoint of survival free from disabling stroke or device removal

for malfunction or failure.27

THE COX PROPORTIONAL HAZARDS MODEL

The Cox proportional hazards (CPH) model is the most popular

approach to evaluate the relationship between covariates and

survival 1,18 and was first proposed by Cox in 1972 to identify

differences in survival due to treatment and prognostic factors in

clinical trials.19,28 Whereas nonparametric methods typically

study the survival function, with regression methods the focus

is on hazard function.

The CPH is referred to as a semiparametric approach,28 as under

this model the baseline hazard function is not parametrized, but

the effect of the explanatory variables on the hazard is parame-

trized (using b coefficients). In other words, the baseline hazard is

left unspecified (not written in terms of parameters to be

estimated), which means that no assumptions are made regarding

the baseline hazard function for each group (survival rates can vary

between exposed and unexposed in an observational study, or

intervention and control groups in a RCT1), whereas the ratio of

their hazards is assumed to be constant. What is parametrized are

the effects of the covariate variables upon survival, which are

constant over time and additive in one scale. We can test the

association of each of the independent variables with survival time

adjusted for other covariates.

Model assumptions

Like any other statistical model, the CPH method relies on some

assumptions. Nevertheless, the semiparametric approach makes

fewer assumptions than the alternative parametric methods:

� The main assumption of the Cox model is that the HRs (defined as

the ratio of the hazards between 2 groups) are independent of

time. In other words, the ratio of hazards between groups is

constant over time. This is known as the proportional hazards (PH)

assumption. If an explanatory variable has a strong association

with survival at the beginning of the follow-up but a weaker effect

later on, this would be considered a violation of the PH assumption.

� The assumption that we have correctly specified the form of the

explanatory variable – this assumption is bound to the PH

assumption, since this may hold for a specific form of the

explanatory variable but not for another. To comply with this

assumption, explanatory variables might benefit from some

transformation. Some continuous variables can be remodeled

either using a binary cutoff point, for example for body mass

index and hemoglobin, or using its continuous nature only above

a certain threshold, for example for creatinine and blood

glucose.29 The most common situation is the log transformation

of highly skewed variables.

� Censoring is uninformative.

� Observations are independent.

Based on the above, the Cox model can fit any distribution of

survival data if the PH assumption is valid (actually, most HRs are

fixed proportional). For this reason, the Cox model is used so

widely.

Model checking

Before reporting any findings, we should check, as far as

possible, that the fitted model is correctly specified. If not, our

inferences could be invalid, and we may draw incorrect conclu-

sions. Model checking is not an easy issue in survival analysis. In

this section, the focus will be on assessing the PH assumption,

though some methods for assessing whether the functional form

for the explanatory variables is correct, are also provided. The last

2 assumptions are not formally testable.

There are 3 main ways of assessing whether the PH assumption

can reasonably hold.30 The first of these methods involves the use

of Kaplan-Meier estimates. If a categorical predictor satisfies the

PH assumption, then the plot of the survival function vs the

survival time will yield 2 parallel curves. Similarly, the graph of the

log(-log[survival]) vs log of survival time graph should result in

parallel lines if the predictor is proportional. This method becomes

problematic with variables that have many categories and does not

work well for continuous variables, unless they are categorized.

Furthermore, the situation becomes too complex in multivariate

models with several explanatory variables, which would need to be

simultaneously tested using combinations of the covariates.31

Hence, this approach quickly becomes cumbersome and unrealis-

tic for more than 2 or 3 variables. The second method to check for

the PH assumption is by formally testing whether the effect of

explanatory variables on the hazard changes over time (this can be

done by including an interaction between time and the explana-
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tory variable into the model). A significant interaction would imply

the hazard function changes over time, and the PH model

assumption would be violated. The third useful way to assess

this assumption is through scaled Schoenfeld residual plots.

Schoenfeld residuals can essentially be thought of as the observed

minus the expected values of the covariates at each failure

time.31,32 The plot of Schoenfeld residuals against time for any

covariate should not show a time-dependent pattern.

In addition to checking for the PH assumption, other aspects of

model fit can be assessed using residuals.30 Martingale residuals

can be used as a way of investigating the appropriate functional

form for continuous variables. A Martingale residual is the

difference between what happened to a person (whether they

had the event or not) and what is predicted to happen to a person

under the model that has been fitted.33 A plot of the martingale

residuals from a null model (model without explanatory variables)

against a continuous variable can be used to indicate the

appropriate functional form for the continuous variable when it

is entered in the model. Deviance residuals and other approaches

are beyond the scope of this review.

Final remarks about nonparametric, parametric, and semi-
parametric approaches

Kaplan-Meier plots are an excellent way of graphically

illustrating the survival experience over time, particularly when

the rate of the outcome changes irregularly. Should the exact

survival or censoring time of each patient be known, the plots are

easy to produce by researchers, and easy to interpret by readers.

The log-rank test is a simple tool that provides a significance test

for comparing survival times between groups. However, the log-

rank test only provides a P value and does not provide a measure of

effect, unlike any regression-type approach providing a HR. A

further advantage of the HR approach (either parametric or

semiparametric) is that it provides tools to investigate confound-

ing and effect modification. Hence, nonparametric approaches are

used to explore data and provide crude estimates, but regression-

type approaches are commonly used to provide more precise

estimates.

Developing an analysis strategy is a complex task. In survival

analysis, incorporating model checking for PH assumption into our

strategy adds an extra layer of complexity. This can be done at

different points in the model building process. Nevertheless, if the

PH assumption does not hold, some other options can be applied

(changing the functional form of the explanatory variables entered

in the model, using stratified CPH models, or using another type of

approach that will be explained in the second part of this review).

STRATEGY OF ANALYSIS: SET OF RECOMMENDATIONS AND
SUGGESTIONS

Different strategies can be used in the setting of survival

analyses. The approach to the data mostly depends on the type of

study and the research question. In this section, we provide some

suggestions for RCTs focused on estimating a treatment effect, and

for observational studies focused on evaluating associations

between exposures and survival times. These recommendations

are not the only way to perform valid analyses—they are just a

summary of a method covering all key aspects.

Randomized controlled trial

In a large RCT we can fairly assume that there are variables

confounding the association between the randomized intervention

and the outcome. One sensible strategy to evaluate survival data

would be to: a) describe the numbers of participants in the

allocation groups and summarize the number of events in each

group; b) provide Kaplan-Meier estimates of the survivor curves in

the treatment groups, and use the log-rank test to evaluate the

alternative hypothesis (survivor curves differ between treatment

groups); c) use plots to informally evaluate whether a PH model

would be appropriate to yield a reliable estimate for the

association between treatment and survival time (plots appear

parallel when hazards for both groups are proportional); d) if a PH

model seems reasonable, fit a CPH model (or a parametric model, if

appropriate) to estimate the HR with its 95% confidence interval,

and corresponding P value; and d) perform more formal

assessments of the PH assumption (eg, by testing for an interaction

of the treatment effect with time, or by plotting Schoenfeld

residuals).

Observational studies

The research question raised in an observational study

determines the choice of explanatory variables to be used in a

survival model. Sometimes the focus is on estimating an exposure

‘‘effect’’—the interest is mainly in one particular exposure, but

other variables are needed to control for potential confounding. On

other occasions, the focus is on understanding the associations

between a set of explanatory variables and the time-to-event. In

this case, the interest is in the independent concomitant

associations of several exposures on survival, perhaps to determine

which has the greatest impact on survival. Strategies for

addressing these 2 types of observational studies are presented

in the next section.

Prediction modeling, where the aim is to use a set of variables to

build a model to predict survival in individuals from a new

cohort,34,35 is not covered in this review. In this setting, the term

‘‘predictor’’ is better suited than the term ‘‘explanatory variable’’,

and the strategy is focused on producing precise estimates for

outcome prediction and assisting in risk stratification and clinical

decision-making. Further details about prediction modeling can be

found elsewhere.34,35

In the case of observational studies aiming to estimate an

exposure ‘‘effect’’, we suggest the following 3-step process based

on a preliminary approach, a main analysis, and a final set of checks

for modeling assumptions. Preliminary analyses would include: a)

using Kaplan-Meier plots and log-rank tests to assess univariate

associations between each exposure and the outcome; b) using

nonparametric and residual plots to make preliminary assess-

ments of the PH assumption for each exposure; and c) evaluating

the association between the main exposure and each potential

confounder by a simple but visual method (eg, using cross-

tabulation). Assuming a PH model would be appropriate (either a

parametric model, or most commonly a Cox model), the main

analysis would therefore involve the following 7 steps: a) fitting a

survival model using only the main exposure to estimate the

univariate association; b) fitting further survival models using the

main exposure and adding each potential confounder, one at a

time; c) evaluating the impact of adjusting for each confounder on

the estimated association between the main exposure and survival

(eg, change in magnitude and direction of HR); d) assessing

whether any covariate modifies the association between the main

exposure and the event (eg, whether there are interactions); e)

fitting a multivariate model for the main exposure, with

adjustment for confounders (prespecified based on clinical

knowledge, or found in step c and for interactions (found in step

d); f) forcing those remaining potential confounders, not included

in the model, back into the model one by one to evaluate whether
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they are confounders in the presence of other covariates; and g)

adding any relevant confounders found in step f to the final model.

Finally, further checks for modeling assumptions and overall

model fit should be made before formally reporting the findings

(eg, by testing for an interaction of the treatment effect with time,

or by plotting Schoenfeld residuals of the final model).

In a situation without a clear prior hypothesis about which

explanatory variables may be associated with survival, sometimes

it may be necessary to perform an exploratory analysis. If there are

not too many variables, it would be sensible to include them all in a

model and evaluate the associations between each variable and the

outcome after full adjustment for all other covariates. Alternative-

ly, a similar 3-step process, based on a preliminary approach, a

main analysis, and a model check, would be useful. Preliminary

analyses would include using Kaplan-Meier plots and log-rank

tests to evaluate the association between each variable and the

outcome. After this first approach, the main analysis needs to

address the issue of selecting the ‘‘best’’ set of covariates. This

approach would require the following tasks: a) evaluating each

variable separately in a sequence of PH models (Cox or parametric,

when appropriate) in order to assess univariate associations

between explanatory variables and the outcome; b) including all

variables selected in the previous step in a single PH model, and

then excluding each variable one by one, to assess whether the

exclusion has a significant impact on the log likelihood (statistical

significance can be tested using likelihood ratio tests); c) entering

each of the variables that have been removed in the previous step

back into the model one by one, to check whether they add

anything to the model (using likelihood ratio tests), and d)

repeating step c as many times as needed for all explanatory

variables that remain out of the model in each ‘‘cycle’’. Finally,

further checks on modeling assumptions should be performed, as

explained for other types of analyses.

Other approaches for the latter 2 scenarios would be to use

automatic tools to select explanatory variables, such as forward or

backward selection step processes. Although they are valid in some

scenarios (particularly prediction modeling), one should bear in

mind that regression modeling is as much an art as a scientific task,

which requires medical knowledge, as well as statistical expertise

and experience.

CONCLUSIONS

This is the first in a series of 2 educational articles reviewing the

basic concepts of survival analyses, laying the foundations to

understand, compare and apply the most relevant statistical

models for survival analyses. Aiming to reach readers without

much background in statistics, a key feature of this review is the

integration of the essentials of survival analysis with practical

examples from cardiovascular studies, showing the reader how to

perform survival analyses and how to interpret their results. The

main model assumptions are presented to provide the tools to

apply the appropriate statistical model according to the shape of

the data. Additionally, recommendations to guide the strategy of

analyses have also been provided, in the hope that they might have

an impact on the critical appraisal and statistical performance of

readers. The second article will tackle a variety of more complex

statistical challenges that are often faced in survival analyses.

These include competing risks, recurrent-event methods, multi-

state models, and the use of restricted mean survival time.
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14. Wiebe J, Dörr O, Liebetrau C, et al. Outcome After Long-segment Stenting With
Everolimus-eluting Bioresorbable Scaffolds Focusing on the Concept of Overlap-
ping Implantation. Rev Esp Cardiol. 2016;69:1144–1151.
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