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The Role and Impact of Gut Microbiota in Cardiovascular Disease

Impacto de la microbiota intestinal en la enfermedad cardiovascular

Takeshi Kitaia and W.H. Wilson Tanga,b,c,*
aDepartment of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio, United States
bDepartment of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
cCenter for Clinical Genomics, Cleveland Clinic, Cleveland, Ohio, United States

Article history:

Available online 18 May 2017

The human gut harbors more than 100 trillion microbial cells,

which intricately regulate the normal development and function of

mucosal barriers. Over the past decade, we have discovered the

substantial inter- and intra-individual variation and versatility of

the gut microbiome profile and changes in health and various

disease states. Although it is clear that the composition of gut

microbiota can be significantly altered in patients with cardio-

metabolic diseases (also known as ‘‘dysbiosis’’), much of the data

remain largely associative in nature. Thus, the path to further

understanding the role of the gut microbiome in health and disease

remains exceedingly challenging. Recent studies have identified

the gut microbiota as playing a critical role in the pathophysiology

of cardiovascular disease (CVD) and chronic kidney disease (CKD).

Given that the primary role of the kidneys is to remove metabolites

and toxic compounds to maintain body homeostasis, impaired

renal function can lead to increased levels of such unwanted

compounds. These organic compounds with adverse biological

activity are often referred to as ‘‘uremic toxins,’’ such as advanced

glycation end products and tryptophan-based metabolites

(eg, p-cresyl sulfate and indoxyl sulfate).1 Indeed, altered profiles

of gut microbiota composition have been associated with

increased production of indoxyl sulfate and p-cresyl sulfate, which

is directly associated with endothelial dysfunction, inflammation

and oxidative stress, and increases in the incidence of CVD and

mortality.2 These data support a gut-renal axis hypothesis

contributing to the progression of CVD and CKD.

The gut microbiota interacts with the host via the intestinal

mucosal surface, and intestinal epithelial barrier function is

maintained by a well-balanced gut microbiota through several

mechanisms, including restoration of protein tight junction

structure, upregulation of mucin genes, and competition with

pathogenic bacteria to bind epithelial cells.3 In the setting of

impaired cardiac and/or renal function, intestinal wall edema due

to systemic congestion and intestinal wall ischemia may reduce

intestinal blood flow, which can result in structural disruption of

the epithelial mucosal barrier and increased permeability.4 In

addition to hemodynamic deterioration, gut dysbiosis is associated

with the production of unwanted toxins and the promotion of a

leaky intestinal barrier.5 The disruption of intestinal barrier

function allows the translocation of endotoxins, microbial

components, and microbial metabolites to enter the systemic

circulation, which can induce immune responses and lead to

systemic inflammation. Circulating bacterial lipopolysaccharide

levels increase with CKD stages and have been associated with a

higher mortality risk. Furthermore, bacterial DNA is also detected

in the blood of patients with both CVD and CKD.6,7 Plasma

inflammatory markers, such as high-sensitive C-reactive protein

and interleukin-6 levels, were higher in patients with bacterial

DNA in the blood than in those without.8 In a recent study, a

corresponding increase in the amount of fecal intestinal bacteria

and fungi has been observed with increasing intestinal permeabil-

ity in patients with heart failure.9

The discovery of trimethylamine N-oxide (TMAO) production

and the development and progression of cardiovascular risk adds

another dimension to this complex interplay between gut

microbiome and its human host, whereby dietary intake (a form

of environmental exposure) interfaces with gut microbiota to

generate metabolites that may serve as promoters of cardiorenal

diseases. Indeed, circulating TMAO levels have consistently been

observed to be elevated in patients with CKD as well as in those

with atherosclerotic burden, and have been associated with the

development and progression of heart failure and CKD.10,11We and

others have observed that increased dietary-induced TMAO

generation in animal models has been associated with myocardial

and renal tubulointerstitial fibrosis.11 Microbial taxa belonging to

the clostridiaceae and peptostreptococcaceae families are positively

associated with blood levels of TMAO in humans.12 Given the high

choline-induced gut microbiota-dependent production of tri-

methylamine (TMA) and TMAO,13 reduced intake of dietary

precursors of TMAO is a potential approach to reduce CVD. We

have recently reported that 3,3-dimethyl-1-butanol (DMB), which

is a structural analog of choline and an inhibitor of TMA formation

through inhibition of microbial TMA lyases, inhibited choline diet-

enhanced endogenous macrophage foam cell formation and

atherosclerotic lesion development without alterations in circu-

lating cholesterol levels.14 DMB was detected in some balsamic

vinegars, red wines, and olive oils, which may in part potentially

explain the cardiovascular benefits of the Mediterranean diet.

Besides identifying gut microbiota-derived metabolites that

can lead to disease progression, various other metabolites may
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promote cardiovascular benefits. For example, a connection

between blood pressure regulation and microbial short chain fatty

acids (SCFAs) has also been gathering attention. Hypertension was

associated with changes in the microbiota as well as in SCFAs.15

SCFAs were shown to act through both olfactory receptor 78 (Olf78),

which increases blood pressure, and G-protein-coupled receptor 41,

which lowers blood pressure.16 High-fiber diets, which increase

microbial SCFA production, lowered blood pressure.17 Individuals

with lower microbial SCFA levels had higher blood pressure.18 In

addition, SCFAs also reduced acute kidney injury and intestinal

mucosal injury in an ischemia-reperfusion mouse model.19,20

Further studies are needed to investigate whether and how changes

in SCFA-producing microbiota truly translate into changes in plasma

levels of SCFAs.

Because gut microbiota plays a role in systemic inflammation,

metabolic syndrome, vascular dysfunction and atherosclerosis,

modulating gut microbiota and its metabolites is a possible

therapeutic strategy. Prebiotics are nondigestible ingredients that

selectively alter the growth or activity of certain species of the

intestinal microbiota. The reduction of p-cresyl sulfate and indoxyl

sulfate was observed in hemodialysis patients receiving inulin.21

Probiotics, organisms in food and dietary supplements that can

confer health benefits on the host, reduced uremic toxins in the gut

through several mechanisms including enhancement of epithelial

barrier function, the production and secretion of mucin, inhibition

of pathogenic bacteria adhesion, regulation of epithelial homeo-

stasis, and increased cell survival.22 The administration of a

probiotic bacterial formulation in CKD patients was associated

with a significant decrease in blood urea nitrogen levels and

significant improvement in the quality of life and serum creatinine

and uric levels.23 Targeting healthy reactive oxygen production in

the gut with probiotics was beneficial for the prevention of CKD

progression.23 Meanwhile, direct removal of gut-derived toxins

has also been a focus in the treatment of patients with CKD.4

However, we have yet to see concrete evidence on the benefits of

gut dysbiosis manipulation or interventions targeting gut micro-

biota in patients with cardiovascular or cardiorenal syndrome.

In summary, multiple factors link the gut and cardiorenal

pathophysiology. In particular, the metabolic potential of gut

microbiota has gained much attention as a contributing factor in

the development of CVD and CKD. Gut microbiota and cardiorenal

syndrome can potentiate each other, leading to a vicious cycle.

Further understanding of these gut-cardiorenal interactions may

result in novel diagnostic and therapeutic approaches as well as

improve the long-term clinical care of these patients. This exciting

new area of gut-cardiorenal interaction needs further investiga-

tion, and long-term intervention studies are warranted to clarify

potential benefits of such strategies in modulating gut microbiota.
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