

Revista Española de Cardiología

6005-231. ESTUDIO DE LOS CAMBIOS EN EL CITOESQUELETO DEL CARDIOMIOCITO DE LOS PACIENTES CON INSUFICIENCIA CARDIACA MEDIANTE LA UTILIZACIÓN DE RNA-SEQ

Isabel Herrer Mambrona¹, Micaela Molina Navarro¹, Ana Ortega Gutiérrez¹, Estefanía Tarazón Melguizo¹, Esther Roselló Lleti¹, Juan Carlos Treviño², Manuel Portolés Sanz¹ y Miguel Rivera Otero¹ del ¹Hospital La Fe, Valencia y ²Sistemas Genómicos (Valencia).

Resumen

Objetivos: El citoesqueleto es un complejo entramado proteico con un papel esencial en los cardiomiocitos. El citoesqueleto determina la morfología celular, interviene en las interacciones célula-matriz extracelular y participa en el proceso de contracción celular. A pesar de que numerosos estudios han encontrado alteraciones en el citoesqueleto de cardiomiocitos de pacientes con insuficiencia cardiaca (IC) todavía no se conocen los detalles moleculares implicados en estos cambios.

Métodos: Realizamos un análisis exhaustivo de la expresión de mediadores y componentes del citoesqueleto utilizando la tecnología de secuenciación de alto rendimiento de RNA (RNA-Seq). El análisis genético se realizó en pacientes con cardiomiopatía dilatada (CMD) (n = 10) y cardiomiopatía isquémica (CMI) (n = 13) en comparación con corazones control (CNT) (n = 7). Para el estudio del comportamiento de los genes diferencialmente expresados se realizó un análisis funcional utilizando para ello la base de datos bioinformática DAVID v6.7. Se seleccionaron aquellos términos GO o vías que presentaban un valor de Benjamin-Hochberg por debajo de 0,05.

Resultados: El análisis funcional de los genes diferencialmente expresados (tasa de cambio > 1,5 y p < 0,05), reveló un enriquecimiento de funciones asociadas al citoesqueleto. Se identificaron un total de 55 genes diferencialmente expresados en CMI vs CNT y 74 en CMD vs CNT asociados a la matriz extracelular y 23 y 22 genes alterados en CMI y CMD respectivamente implicados en las uniones focales. Además se encontraron asociados a la regulación del citoesqueleto de actina 28 y 31 genes diferencialmente entre CMI y CMD vs CNT respectivamente.

Conclusiones: Este estudio nos revela la extensión en la alteración del citoesqueleto en pacientes con IC. La utilización de la tecnología de RNA-Seq nos permite identificar nuevos genes implicados en el citoesqueleto con expresión aberrante en pacientes con IC. Estos datos indican que además podrían estar contribuyendo a la depresión de la función y el remodelado de la estructura ventricular en relación con la evolución del síndrome.