

Revista Española de Cardiología

4042-9. MODIFICACIÓN NO HOMOGÉNEA DE LAS PROPIEDADES ELECTROFISIOLÓGICAS CARDIACAS PROVOCADAS POR LA FLECAINIDA

Andreu Climent¹, María S. Guillem², Peter Lee¹, María Eugenia Fernández-Santos¹, Ricardo Sanz-Ruiz¹, Felipe Atienza¹, Pedro Luis Sánchez¹ y Francisco Fernández-Avilés¹ del ¹Hospital General Universitario Gregorio Marañón, Madrid y ²Itaca, Universidad Politécnica de Valencia, Valencia.

Resumen

Introducción y objetivos: El síndrome de Brugada se caracteriza por una mutación genética que comporta la reducción en la corriente entrante de sodio en la fase 1 del potencial, sin embargo las alteraciones electrocardiográficas que caracterizan el fenotipo de esta patología pueden ser transitorios. El objetivo de este estudio fue caracterizar a nivel espacial las modificaciones electrofisiológicas producidas por la reducción de la corriente de sodio.

Métodos: En el presente trabajo se han analizado mapas de voltaje transmembranal epicárdico medidos mediante el fluoróforo de voltaje di4-ANEPPS sobre 10 corazones de rata Wistar (367 ± 87 g) aislados y perfundidos en un sistema Langendorff. Para cada corazón se han estudiado la duración media del potencial de acción transmembrana (APD50) y el tiempo de subida de los potenciales (TS) en el ventrículo derecho (VD), tracto de salida del ventrículo derecho (TSVD) y en el ventrículo izquierdo (VI). Las medidas se tomaron en condiciones basales y tras el suministro de flecainida 10 uM.

Resultados: La inyección de flecainida produjo un aumento significativo de la duración del APD así como del tiempo total de despolarización en cada región cardiaca respecto a las condiciones basales (fig.). El aumento en la duración del APD fue mayor en el VD respecto al VI $(17,34 \pm 6,67 \text{ ms vs } 7,09 \pm 6,39 \text{ ms, p} < 0,01)$. Este aumento inhomogéneo provocó un cambio en el gradiente de duración de los potenciales de acción entre VD y VI. Por el contrario, el aumento en el TS del VI fue significativamente mayor que en el VD $(3,37 \pm 1,84 \text{ ms vs } 2,80 \pm 2,11 \text{ ms, p} < 0,05)$.

Figura. Modificaciones en duración de potencial de acción y tiempo de despolarización.

Conclusiones: La flecainida da lugar a modificaciones no homogéneas de las propiedades electrofisiológicas del tejido cardiaco pudiendo, por tanto, provocar heterogeneidades susceptibles de iniciar o mantener un proceso fibrilatorio.