

Revista Española de Cardiología

7. RECEPTOR SOLUBLE DE TRANSFERRINA COMO MARCADOR DE DEFICIENCIA DE HIERRO TISULAR: IMPACTO EN BIOMARCADORES CARDIACOS, SISTÉMICOS, HEMATÍNICOS Y NEUROHORMONALES EN PACIENTES CON INSUFICIENCIA CARDIACA SIN DEFICIENCIA DE HIERRO SISTÉMICA

Raúl Ramos Polo¹, Santiago Jiménez Marrero¹, María del Mar Ras Jiménez¹, Núria José Bazan¹, Miriam Corbella², Esther Calero Molina¹, Lidia Alcoberro Torres¹, Encarna Hildalgo Quirós¹, Cristina Enjuanes Grau¹, Sergi Yun Viladomat¹, Marta Ruiz Muñoz¹, Alberto Garay Melero¹, Pedro Moliner Borja¹ y Josep Comín Colet¹

¹Hospital Universitario de Bellvitge, Barcelona, España y ²Institut d'Investigació Biomèdica de Bellvitge IDIBELL, L'Hospitalet de Llobregat (Barcelona), España.

Resumen

Introducción y objetivos: El receptor soluble de transferrina (sTfR) es un marcador del estado de hierro en los tejidos y puede ayudar a informar sobre la depleción leve de hierro y el aumento de la demanda de hierro a nivel tisular, aun sin deficiencia de hierro sistémica o anemia manifiesta. Nuestro objetivo fue describir la asociación entre sTfR como marcador de aumento de la demanda de hierro y deficiencia de hierro tisular en biomarcadores cardiacos, sistémicos, neurohormonales y hematínicos en pacientes con IC, sin anemia y estado de hierro sistémico normal.

Métodos: Estudio observacional, prospectivo y de cohortes, con 1120 pacientes consecutivos con IC incluyendo todo el rango de FEVI (estudio DAMOCLES). Se incluyeron pacientes con niveles normales de hemoglobina (? 12 g/dl), estado de hierro sistémico normal (hierro sérico > 33 ?g/dl, ferritina > 100 ng/ml y saturación de transferrina > 20%) y con biomarcadores disponibles. El objetivo principal fue explorar la asociación entre sTfR y los niveles de NT-proBNP. El objetivo secundario fue explorar la asociación entre sTfR y una amplia variedad de biomarcadores séricos.

Resultados: La cohorte final del estudio consistió en 215 pacientes. La edad media fue de 70 ± 12 años, la FEVI media fue de $43 \pm 15\%$ y 62 (29%) eran mujeres. El log[sTfR] (tabla) mostró correlaciones significativas con log[NT-proBNP] (r = 0.230; p = 0.001), log[cTnT] (r = 0.197; valor de p = 0.028), log[albúmina(r = -0.221; p = 0.001), proteína C-reactiva (r = 0.215; valor-p = 0.002), niveles séricos de eritropoyetina, MCH (r = -0.247; valor-p 0.001) y MCHC (r = -0.209; valor-p 0.001). En modelos GAM (figura), se confirmó que niveles más altos de sTfR estaban asociados con niveles aumentados de biomarcadores sugiriendo daño cardiaco (cTnT, NT-proBNP), estado inflamatorio activo (proteína C-reactiva) y mayor estimulación celular en respuesta a la hipoxia tisular (eritropoyetina endógena).

Modelos multivariantes ajustados por edad y sexo para explorar el efecto sobre los biomarcadores cardiacos, sistémicos, neurohormonales y hematínicos del sTfR como biomarcador de la demanda tisular de hierro en pacientes no anémicos con IC y parámetros de hierro sistémicos normales

Biomarcadores cardiacos y sistémicos

	logNT-proBNP		CRP		logCTnT		Log s-Albumin	
	s?c*	p	s?c*	p	s?c*	p	s?c*	p
Log [sTfR 1 mg/l]	0,186	0,004	0,199	0,004	0,178	0,049	-0,190	0,005

Biomarcadores neurohormonales

	EPO		sACE		PRA		ALDO	
	s?c*	p	s?c*	p	s?c*	p	s?c*	p
Log [sTfR 1 mg/l]	-0,186	0,007	0,038	0,591	0,008	0,911	0,120	0,082

Biomarcadores hematínicos y estado de hierro

	CHM		MCHC		RET-HEM		TSAT	
	s?c*	p	s?c*	p	s?c*	p	s?c*	p
Log [sTfR 1 mg/l]	-0,248	0,001	-0,187	0,019	-0,110	0,150	-0,086	0,215

s?c*: coeficiente ? estandarizado; p: valor p. NT-proBNP: péptido natriurético tipo B (pg/ml); PCR: proteína C reactiva(mg/dl); cTnT: troponina T cardiaca (ng/l); EPO: eritropoyetina endógena mU/ml, sACE: actividad ECA sérica; ARP: actividad renina plasmática; ALDO: aldosterona sérica (pg/ml); MCH: hemoglobina corpuscular media (pg); MCHC: concentración media de hemoglobina corpuscular (pg/fL); RET-HEM: hemoglobina reticulocitaria (pg); TSAT:% de saturación de transferrina.

Modelos GAM (ajustados por edad y sexo) para evaluar la asociación entre sTfR y biomarcadores.

Conclusiones: En una cohorte de pacientes con insuficiencia cardiaca sin anemia ni deficiencia de hierro sistémica, niveles más altos de sTfR que indican una mayor demanda de hierro y déficit tisular de hierro, se asociaron con un peor perfil de biomarcadores que sugiere daño cardiaco y/o sistémico subclínico temprano, incluso en ausencia de deficiencia de hierro o anemia sistémica evidente.