

Revista Española de Cardiología

4008-3. IMPACTO DE VARIANTES SINÓNIMAS EN LAS MIOCARDIOPATÍAS HEREDITARIAS

Ana Isabel Fernández Ávila¹, Silvia Vilches Soria², Irene Méndez Fernández², Cristina Gómez González², Renée Olsen Rodríguez³, Nélida Vázquez Aguilera², Reyes Álvarez-García Revés⁴, Miriam Centeno Jiménez⁴, Constancio Medrano López⁴, Javier Bermejo Thomas² y M.M. Ángeles Espinosa Castro²

¹Cardiología. Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, España, ² Cardiología. Hospital General Universitario Gregorio Marañón, Madrid, España, ³Cardiología. Hospital Universitario de Getafe, Getafe (Madrid), España y ⁴Cardiología Pediátrica. Hospital General Universitario Gregorio Marañón, Madrid, España.

Resumen

Introducción y objetivos: Las variantes sinónimas en miocardiopatías hereditarias suelen clasificarse como benignas al no producir un cambio directo en la secuencia de aminoácidos. Pero un cambio de nucleótido puede repercutir en la estructura y funcionalidad de la proteína por diferentes mecanismos. De hecho, variantes sinónimas ya han ido reclasificadas como patogénicas. Existen nuevas herramientas de análisis *in silico* que permiten determinar el potencial impacto de estas variantes y reevaluar su papel causal. El objetivo del estudio fue evaluar estas variantes en una cohorte de pacientes con miocardiopatía.

Métodos: Se revisaron retrospectivamente los análisis genéticos (exoma clínico o exoma completo) de 1.500 probandos de una Unidad Cardiopatías Familiares (marzo de 2019-febrero de 2024). Se analizaron específicamente variantes sinónimas, su frecuencia y potencial impacto (herramientas synVEP, usDSM, RNAfold, SpliceAI), en genes principales de miocardiopatías con herencia autosómica dominante (30 genes).

Resultados: Se detectaron 1.172 variantes sinónimas diferentes en 1500 pacientes. Asumiendo que las variantes neutras surgen de manera más frecuente que las deletéreas, se determinó el número de variantes sinónimas, *a priori* consideradas neutras, y se comparó con el número de variantes *missense* (figura). La aparición de variantes sinónimas en los genes LMNA, DES, MYL2, CSRP3 y TPM1 fue dos veces superior a la de *missense*, indicando neutralidad, mientras que para el resto de genes fue igual o inferior que las *missense*, incluso 3 veces inferior para PKP2, MYBPC3, ACTC1 y TNNC1, indicando no neutralidad. De las 1.172 variantes sinónimas, 27 en 29 pacientes (5 con miocardiopatía arritmogénica, 14 con miocardiopatía dilatada, 9 con miocardiopatía hipertrófica y 1 con muerte súbita no aclarada, 23 de ellos con genética negativa) estaban ausentes en población general y tenían potencial impacto deletéreo. Por tanto, se reclasificaron y pasaron a ser consideradas candidatas a determinar el fenotipo de estos pacientes (tabla).

Variantes sinónimas candidatas

		Fraguancia		Spliging			Otra
Gen	cDNA	Frecuencia synVEP	usDSM	spucing	RNAfold Pacient	e Fenotipo	variante
		(%)		AI			(P/LP)

	c.2265G> A 0,001	0,763	0,714	0,000	S,E	1	MCD	No
МҮН7	c.4948T> 0,001	0,686	0,611	0,000	S,E	2	MCD	No
	c.4618C> 0,007	0,676	0,706	0,000	S,E	3	MCD	No
	c.432C> 0,000	0,917	0,700	0,000	S,E	4	MCD	No
	c.3846C> A 0,000	0,622	0,721	0,000	No	5	МСН	MYH7
FLNC	c.126C> T0,000	0,634	0,774	0,000	No	6	MCD	No
	c.3090C> 0,000	0,506	0,168	0,020	No	7	МСН	No
	c.531C> T0,000	0,684	0,512	0,000	No	8	MCD	No
TNNT2	c.255G> T0,000	0,993	0,82	0,010	S,E	9	MCD	No
	c.453G> 0,000 C	0,93	0,506	0,000	S,E	10	MCD	No
МҮН6	c.4560A> G 0,006	0,601	0,684	0,030	No	11	МСН	MYL3
	c.3609C> 0,001	0,527	0,679	0,000	No	12	MCD	МҮН7
	c.3609C> 0,001	0,527	0,679	0,000	No	13	МСН	SOS1
	c.3609C> 0,001	0,527	0,679	0,000	No	14	МСН	no
	c.4419G> A 0,000	0,745	0,839	0,030	Е	15	МСН	no

c.732C>7	Γ0,001	0,779	0,750	0,000	No	16	MCD	LZTR1	
c.546G> A	0,003	0,703	0,587	0,020	No	17	MCD	SCN5A	
SCN5A	c.1578C> A	0,000	0,900	0,271	0,200	E	18	MCA	No
BAG3	c.465A> G	0,001	0,689	0,341	0,000	S,E	19	MCA	No
	c.456A> G	0,001	0,887	0,449	0,000	S,E	20	MCD	No
DSP	c.81C> A	0,001	0,907	0,476	0,000	S,E	21	МСН	No
	c.6471A> C	0,006	0,932	0,202	0,000	S,E	22	MCD	No
JUP	c.72G> A	0,000	0,894	0,200	0,000	Е	23	MCD	No
	c.1815C> G	0,000	0,807	0,303	0,000	S,E	24	MCA	No
	c.351C> T	Γ0,002	0,783	0,485	0,020	S,E	25	МСН	No
	c.468G> A	0,000	0,817	0,982	0,830	S,E	26	MCA- Naxos	No
TTR	c.342A>7	Γ0,000	0,989	0,704	0,000	Е	27	MS	No
PKP2	c.1464C> T	0,001	0,913	0,592	0,240	S,E	27	MS	No
	c.795G> 7	Γ0,007	0,942	0,517	0,000	S,E	28	MCA	No
RBM20	c.978G> A	0,001	0,556	0,645	0,010	No	29	МСН	NF1

MCD: miocardiopatía dilatada; MCH: miocardiopatía hipertrófica; MCA: miocardiopatía arritmogénica; MS: muerte súbita; synVEP: predictor basado en aprendizaje automático para evaluar los efectos de variantes sinónimas humanas (0-1); usDSM: predictor basado en *random forest* para detectar mutaciones sinónimas nocivas (0-1); Splicing AI: predictor de *splicing* mediante inteligencia artificial (0-1); RNAfold: predictor de estructura secundaria del RNA (S: estructura, E: entropía).

Ratio de variantes sinónimas y missense (número de variantes/tamaño transcrito en Kb) en los 30 genes analizados.

Conclusiones: Las nuevas herramientas de predicción nos han permitido reclasificar el 2% de las variantes sinónimas de benignas a variantes de significado incierto, candidatas a estudios de segregación fenotipogenotipo. Las nuevas evidencias apoyan la necesidad de reanalizar este tipo de variantes con las nuevas herramientas de predicción disponibles y tenerlas en cuenta en los estudios genéticos.