ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 7. Núm. A.
Páginas 23A-30A (Marzo 2007)

Hipertensión arterial, nefropatía diabética y riesgo cardiovascular
Efectos pleiotrópicos de telmisartán en el paciente diabético

Pleiotropic Effects of Telmisartan in Diabetic Patients

José TuñónabMarta Ruiz-OrtegacJosé Luis Martín-VenturacNieves TaríndJesús Egidobce¿

Opciones

La hipertensión coexiste frecuentemente con el daño renal y con alteraciones en el metabolismo de los lípidos y la glucosa. Los antagonistas de los receptores de la angiotensina II (ARA-II) no sólo disminuyen la proteinuria y el daño renal, sino que pueden tener efectos metabólicos beneficiosos. Además, algunos ARA-II, como el telmisartán tienen similitud estructural con las glitazonas y son agonistas parciales de los receptores PPAR-γ (peroxisome proliferator-activated receptor-γ). Estos receptores aumentan la sensibilidad a la insulina, disminuyendo la glucemia y la concentración plasmática de ácidos grasos. De acuerdo con esto, el telmisartán disminuye los valores de colesterol total, LDL, glucosa e insulina. Sin embargo, otros ARA-II sin esta acción sobre los PPAR-γ reducen la incidencia de diabetes. Por tanto, debemos esperar los resultados de los estudios en marcha ONTARGET y TRANSCEND para comprobar si este favorable perfil metabólico de telmisartán se traduce en beneficios adicionales en términos de reducción de riesgo cardiovascular.

Palabras clave

Angiotensina
Diabetes
Colesterol
Este artículo solo puede leerse en pdf
Bibliografía
[1.]
Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults.
Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III).
JAMA, (2001), 285 pp. 2486-2497
[2.]
H. Ibsen, M.H. Olsen, K. Wachtell, K. Borch-Johnsen, L.H. Lindholm, C.E. Mogenesen.
Does albuminuria predict cardiovascular outcomes on treatment with losartan versus atenolol in patients with diabetes, hypertension, and left ventricular hypertrophy? The LIFE study.
Diabetes Care, (2006), 29 pp. 595-600
[3.]
P. Zimmet, K.G. Alberti, J. Shaw.
Global and societal implications of the diabetes epidemic.
Nature, (2001), 414 pp. 782-787
[4.]
R. Padwal, A. Laupacis.
Antihypertensive therapy and incidence of type 2 diabetes: a systematic review.
Diabetes Care, (2004), 27 pp. 247-255
[5.]
S. Yusuf, H. Gerstein, B. Hoogwerf, J. Pogue, J. Bosch, B.H. Wolffenbuttel, et al.
Ramipril and the development of diabetes.
JAMA, (2001), 286 pp. 1882-1885
[6.]
L. Hansson, L. Lindholm, L. Niskanen, J. Lanke, T. Hedner, A. Niklason, et al.
Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial.
Lancet, (1999), 353 pp. 611-616
[7.]
The ALLHAT Officers and coordinators for the ALLHAT Collaborative Research Group.
Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT).
JAMA, (2002), 288 pp. 2981-2997
[8.]
S. Yusuf, M.A. Pfeffer, K. Swdberg, C.B. Granger, P. Held, J.J. McMurray.
Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARMPreserved Trial.
[9.]
I. Giatras, J. Lau, A.S. Levery.
Effect of angiotensin-converting enzyme inhibitors on the progression of nondiabetic renal disease: a meta-analysis of randomized trials. Angiotensin-Converting-Enzyme Inhibition and Progressive Renal Disease Study Group.
Ann Intern Med, (1997), 127 pp. 337-345
[10.]
G. Maschio, D. Alberti, G. Janin, F. Locatelli, J.F. Mann, M. Motolese, et al.
Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group.
N Engl J Med, (1996), 334 pp. 939-945
[11.]
J.T. Wright, G. Bakris, T. Greene, Y. Agodoa, L.J. Appel, J. Charleston, et al.
Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial.
JAMA, (2002), 288 pp. 2421-2431
[12.]
G. Viberti, N.M. Wheeldom.
Microalbuminuria reduction with valsartan (MARVAL) study investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect.
Circulation, (2002), 106 pp. 672-678
[13.]
B.M. Brenner, M.E. Cooper, D. De Zeeuw, W.F. Keane, W.E. Mitch, H.H. Parving, et al.
Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy.
N Engl J Med, (2001), 345 pp. 861-869
[14.]
E.J. Lewis, L.G. Hunsicker, W.R. Clarke, T. Berl, M.A. Pohl, J.B. Lewis, et al.
Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes.
N Engl J Med, (2001), 345 pp. 851-860
[15.]
A.H. Barnett, S.C. Bain, P. Bouter, B. Karlberg, S. Madsbad, J. Jervell, et al.
Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy.
N Engl J Med, (2004), 351 pp. 1952-1961
[16.]
M. De Gasparo, K.J. Catt, T. Inagami, J.W. Wright, T. Unger.
International union of pharmacology. XXIII. The angiotensin II receptors.
Pharmacol Rev, (2000), 52 pp. 415-472
[17.]
M. Ruiz-Ortega, M. Rupérez, V. Esteban, J. Rodríguez-Vita, E. Sánchez-López, G. Carvajal, et al.
Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases.
Nephrol Dial Transplant, (2006), 21 pp. 16-20
[18.]
M. Ruiz-Ortega, V. Esteban, M. Rupérez, E. Sánchez-López, J. Rodríguez-Vita, G. Carvajal, et al.
Renal and vascular hypertensioninduced inflammation: role of angiotensin II.
Curr Opin Nephrol Hypertens, (2006), 15 pp. 159-166
[19.]
J. Tuñón, N. Tarín, J. Egido.
Effects of calcium antagonists on vasoactive hormones.
Calcium antagonists in clinical medicine, 3.ª ed., Hanley & Belfus, pp. 579-602
[20.]
M. Ruiz-Ortega, O. Lorenzo, Y. Suzuki, M. Rupérez, J. Egido.
Proinflammatory actions of angiotensins.
Curr Opin Nephrol Hypertens, (2001), 10 pp. 321-329
[21.]
A.J. Ferreira, R.A. Santos.
Cardiovascular actions of angiotensin-(1-7).
Braz J Med Biol Res, (2005), 38 pp. 499-507
[22.]
V.J. Dzau, M. Mukoyama, R.E. Pratt.
Molecular biology of angiotensin receptors: Target for drug research?.
J Hypertens, (1994), 12 pp. 1-5
[23.]
G.H. Gibbons, R.E. Pratt, V.J. Dzau.
Vascular smooth muscle cell hypertrophy vs hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II.
J Clin Invest, (1992), 90 pp. 456-461
[24.]
T. Massfelder, N. Taesch, N. Endlich, A. Eichinger, Escande., K. Endlich, et al.
Paradoxical actions of exogenous and endogenous parathyroid hormone-related protein on renal vascular smooth muscle cell proliferation: reversion in the SHR model of genetic hypertension.
FASEB J, (2001), 15 pp. 707-718
[25.]
O. Lorenzo, M. Ruiz-Ortega, P. Esbrit, M. Rupérez, A. Ortega, S. Santos, et al.
Modulation of Parathyroid Hormone (PTH)-related Protein (PTHrP) and the PTH/PTHrP receptor-1 by angiotensin ii in the rat kidney.
J Am Soc Nephrol, (2002), 13 pp. 1595-1607
[26.]
M. Rupérez, O. Lorenzo, L. Blanco-Colio, V. Esteban, J. Egido, M. Ruiz-Ortega.
The Connective Tissue Growth Factor is a Mediator of Angiotensin II-induced fibrosis.
Circulation, (2003), 108 pp. 1499-1509
[27.]
M. Rupérez, M. Ruiz-Ortega, V. Esteban, O. Lorenzo, S. Mezzano, J.J. Plaza, et al.
Angiotensin II increases connective tissue growth factor in the kidney.
Am J Pathol, (2003), 613 pp. 1937-1947
[28.]
V. Esteban, O. Lorenzo, M. Rupérez, Y. Suzuki, S. Mezzano, J. Blanco, et al.
Angiotensin II, via AT1 and AT2 receptors and NF-κB pathway, regulates the inflammatory response in unilateral ureteral obstruction.
J Am Soc Nephrol, (2004), 15 pp. 1514-1529
[29.]
S. Andersen, F.A. Van Nieuwenhoven, L. Tarnow, P. Rossing, K. Rossing, L. Wieten, et al.
Reduction of urinary connective tissue growth factor by Losartan in type 1 patients with diabetic nephropathy.
Kidney Int, (2005), 67 pp. 2325-2329
[30.]
J. Rodríguez-Vita, E. Sánchez-López, V. Esteban, M. Rupérez, J. Egido, M. Ruiz-Ortega.
Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factorbeta-independent mechanism.
Circulation, (2005), 111 pp. 2509-2517
[31.]
M. Ruiz-Ortega, O. Lorenzo, J. Egido.
Angiotensin III increases MCP-1 and activates NF-κB and AP-1 in cultured mesangial cells.
Kidney Int, (2000), 57 pp. 2285-2298
[32.]
M. Ruiz-Ortega, M. Rupérez, O. Lorenzo, V. Esteban, Y. Suzuki, S. Mezzano, et al.
Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney.
Kidney Int, (2002), 82 pp. 12-22
[33.]
L.A. Velloso, F. Folli, X.J. Sun, M.F. White, M.J. Saad, C.R. Kahn.
Cross-talk between the insulin and angiotensin signaling systems.
Proc Natl Acad Sci USA, (1996), 93 pp. 12490-12495
[34.]
F. Folli, C.R. Kahn, H. Hansen, J.L. Bouchie, E.P. Fener.
Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk.
J Clin Invest, (1997), 100 pp. 2158-2169
[35.]
F. Andreozzi, E. Laratta, A. Sciacqua, F. Perticone, G. Sesti.
Angiotensin II impairs the insulin signalling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells.
[36.]
T. Ogihara, T. Asano, K. Ando, Y. Chiba, H. Sakoda, M. Anai.
Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling.
Hypertension, (2002), 40 pp. 872-879
[37.]
T.M. Willson, M.H. Lambert, S.A. Kliewer.
Peroxisome proliferatoractivated receptor gamma and metabolic disease.
Annu Rev Biochem, (2001), 70 pp. 341-367
[38.]
G. Chinetti, J.C. Fruchart, B. Staels.
Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation.
Inflamm Res, (2000), 49 pp. 497-505
[39.]
H. Duez, Y.S. Chao, M. Hernández, G. Torpier, P. Poulain, S. Mundt, et al.
Reduction of atherosclerosis by the peroxisome proliferatoractivated receptor alpha agonist fenofibrate in mice.
J Biol Chem, (2002), 277 pp. 48051-48057
[40.]
H.B. Rubins, S.J. Robins, D. Collins, C.L. Fye, J.W. Anderson, M.B. Elam, et al.
Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group.
N Engl J Med, (1999), 341 pp. 410-418
[41.]
J.M. Lehmann, L.B. Moore, T.A. Smith-Oliver, W.O. Wilkinson, T.M. Willson, S.A. Kliewer.
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma).
J Biol Chem, (1995), 270 pp. 12953-12956
[42.]
Rosen ED, Spiegelman BM. PPAR gamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 12;276:37731-4.
[43.]
T.M. Willson, P.J. Brown, D.D. Sternbach, B.R. Henke.
The PPARs: from orphan receptors to drug discovery.
J Med Chem, (2000), 43 pp. 527-550
[44.]
J.J. Nolan, B. Ludvik, P. Beerdsen, M. Joyce, J. Olefsky.
Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone.
N Engl J Med, (1994), 331 pp. 1188-1193
[45.]
M. Bajaj, S. Suraamornkul, P. Piper, L.J. Hardies, L. Glass, E. Cersosimo, et al.
Decreased plasma adiponectin concentrations are closely related to hepatic fat content and hepatic insulin resistance in pioglitazone-treated type 2 diabetic patients.
J Clin Endocrinol Metab, (2004), 89 pp. 200-206
[46.]
S.C. Benson, H.A. Pershadsingh, C.I. Ho, A. Chittiboyina, P. Desai, M. Pravenec, et al.
Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity.
Hypertension, (2004), 43 pp. 993-1002
[47.]
M. Schupp, J. Janke, R. Clasen, T. Unger, U. Kintscher.
Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity.
Circulation, (2004), 109 pp. 2054-2057
[48.]
M. Fujimoto, H. Masuzaki, T. Tanaka, S. Yasue, T. Tomita, K. Okazawa, et al.
An angiotensin II AT1 receptor antagonist, telmisartan augments glucose uptake and GLUT4 protein expression in 3T3-L1 adipocytes.
FEBS Lett, (2004), 576 pp. 492-497
[49.]
J.P. Berger, A.E. Petro, K.L. Macnaul, L.J. Kelly, B.B. Zhang, K. Richards.
Distinct properties and advantages of a novel peroxisome proliferator- activated protein [gamma] selective modulator.
Mol Endocrinol, (2003), 17 pp. 662-676
[50.]
K. Sugimoto, N.R. Qi, L. Kazdova, M. Pravenec, T. Ogihara, T.W. Kurtz.
Telmisartan but not valsartan increases caloric expenditure and protects against weight gain and hepatic steatosis.
Hypertension, (2006), 47 pp. 1003-1009
[51.]
G. Derosa, P.D. Ragonesi, A. Mugellini, L. Ciccarelli, R. Fogari.
Effects of telmisartan compared with eprosartan on blood pressure control, glucose metabolism and lipid profile in hypertensive, type 2 diabetic patients: a randomized, double-blind, placebocontrolled 12-month study.
Hypertens Res, (2004), 27 pp. 457-464
[52.]
C. Vitale, G. Mercuro, C. Castiglioni, A. Cornoldi, A. Tulli, M. Fini, et al.
Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic síndrome.
Cardiovasc Diabetol, (2005), 4 pp. 6-13
[53.]
S. Yusuf, J.B. Ostergren, H.C. Gerstein, M.A. Pfeffer, K. Swedberg, C.B. Granger, et al.
Effects of candesartan on the development of a new diagnosis of diabetes mellitus in patients with heart failure.
[54.]
M. Hernández-Presa, C. Bustos, M. Ortego, J. Tuñón, G. Renedo, M. Ruiz-Ortega, et al.
Angiotensin-converting enzyme inhibition prevents arterial NF-κB activation, MCP-1 expression and macrophage infiltration in a rabbit model of early accelerated atherosclerosis.
Circulation, (1997), 95 pp. 1532-1541
[55.]
J. Egido, M.A. Hernández-Presa, J. Tuñón, L.M. Blanco-Colio, M. Ortego, Y. Suzuki, et al.
Transcription factor κB (NF-κB) and cardiovascular disease.
Cardiovascular Risk Factors, (1999), 9 pp. 159-168
[56.]
M. Hernández-Presa, C. Bustos, M. Ortego, J. Tuñón, L. Ortega, J. Egido.
The ACE inhibitor quinapril reduces the arterial expression of NFκB dependent proinflammatory factors but not of collagen in a rabbit model of atherosclerosis.
Am J Pathol, (1998), 153 pp. 1825-1837
[57.]
M. Ruiz-Ortega, C. Bustos, M.A. Hernández-Presa, O. Lorenzo, J.J. Plaza, J. Egido.
Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis.
J Immunol, (1998), 161 pp. 430-439
[58.]
M. Ruiz-Ortega, O. Lorenzo, M. Rupérez, S. Konig, B. Wittig, J. Egido.
Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms.
Circ Res, (2000), 86 pp. 1266-1272
[59.]
N.D. Vaziri, Z.G. Xu, A. Shahkarami, K.T. Huang, B. Rodríguez-Iturbe, R. Natarajan.
Role of AT-1 receptor in regulation of vascular MCP-1, IL-6, PAI-1, MAP kinase, and matrix expressions in obesity.
Kidney Int, (2005), 68 pp. 2787-2793
[60.]
D. Fliser, K. Buchholz, H. Haller.
for the EUropean Trial on Olmesartan and Pravastatin in Inflammation and Atherosclerosis (EUTOPIA) Investigators Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation.
Circulation, (2004), 110 pp. 1103-1107
[61.]
S. Koulouris, P. Symeonides, K. Triantafyllou, G. Ioannidis, I. Karabinos, T. Katostaras, et al.
Comparison of the effects of ramipril versus telmisartan in reducing serum levels of high-sensitivity C-reactive protein and oxidized low-density lipoprotein cholesterol in patients with type 2 diabetes mellitus.
Am J Cardiol, (2005), 95 pp. 1386-1388
[62.]
P.M. Ridker, E. Danielson, N. Rifai, N.J. Glynn.
Valsartan, blood pressure reduction, and c-reactive protein. Primary report of the Val-MARC Trial.
[63.]
K.K. Koh, M.G. Quon, S.H. Han, W.J. Chung, Y. Lee, E.K. Shin.
Antiinflammatory and metabolic effects of candesartan in hypertensive patients.
Int J Cardiol, (2006), 108 pp. 96-100
[64.]
L.M. Blanco-Colio, J. Tuñón, J.L. Martín-Ventura, J. Egido.
Antiinflammatory and immunomodulatory effects of statins.
[65.]
R.H. Boger, E. Schwedhelm, R. Mass, S. Quispe-Bravo, C. Skamira.
ADMA and oxidative stress may relate to the progression of renal disease: rationale and design of the VIVALDI study.
Vasc Med, (2005), 10 pp. S97-102
[66.]
H. Makino, M. Haneda, T. Babazono, T. Moriya, S. Ito, Y. Iwamoto, et al.
The telmisartan renoprotective study from incipient nephropathy to overt nephropathy—rationale, study design, treatment plan and baseline characteristics of the incipient to overt: angiotensin II receptor blocker, telmisartan, Investigation on Type 2 Diabetic Nephropathy (INNOVATION) Study.
J Int Med Res, (2005), 33 pp. 677-686
[67.]
K. Teo, S. Yusuf, P. Sleight, C. Anderson, F. Mookadam, B. Ramos, et al.
Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: the Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND) trials.
Am Heart J, (2004), 148 pp. 52-61
[68.]
S. Yusuf, G. Dagenais, J. Pogue, J. Bosch, P. Sleight.
Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators.
N Engl J Med, (2000), 342 pp. 145-153

Full English text available at: www.revespcardiol.org

Copyright © 2007. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?