Impaired Coronary Flow Reserve in Patients With Non-Ischemic Heart Failure

Isabel Coma-Canella, María José García-Velloso, Alfonso Macías, Luis Villar, Juan Cosín-Sales, Josep M. Martí-Climent, and Miguel Artaiz

Introduction and objectives. Coronary flow reserve (CFR) is impaired not only in ischemic heart disease, but also in cardiac diseases that may or may not course with heart failure. The aim of the present study was to determine if the severity of heart failure can influence CFR impairment.

Methods. Forty patients with non-ischemic heart disease and heart failure were studied 41 times. Four groups were established: 1. 10 patients in functional class III-IV; 2. 10 patients in functional class II not taking beta-blockers; 3. 11 patients in class II treated with carvedilol, and 4. 10 patients in class I. These patients had a history of heart failure and systolic dysfunction. Myocardial blood flow (MBF) was measured with positron emission tomography (PET) and N-13 ammonia at rest (r) and during adenosine (PET) and N-13 ammonia at rest (r) and during adenosine triphosphate (ATP) infusion.

Results. MBF and CFR were significantly higher in group 4 (1.95 ± 0.58 and 2.40 ± 0.95 ml/min/g) than in group 1 (1.02 ± 0.52 and 1.46 ± 0.48 ml/min/g). CFR tended to be higher in groups 2 (1.73 ± 0.72), and 3 (1.89 ± 0.75) vs group 1. No significant correlation was found between CFR and the following variables: age, systolic blood pressure, ventricular mass index, ventricular volume indexes, and ejecction fraction.

Conclusions. Coronary microvascular function is impaired in non-ischemic heart failure, and the impairment is related to functional class, regardless of the underlying responsible heart disease.

Key words: Positron emission tomography. PET. Coronary flow reserve. Heart failure. ATP.

Disminución de la reserva de flujo coronario en pacientes con insuficiencia cardíaca no isquémica

Introducción y objetivos. La reserva de flujo coronario (RFC) se reduce no sólo en la cardiopatía isquémica, sino también en otras cardiopatías, con o sin insuficiencia cardíaca. El objetivo del estudio fue comprobar si la gravedad de la insuficiencia cardíaca influye en el deterioro de la RFC.

Métodos. Se estudió a 40 pacientes diagnosticados de cardiopatía no isquémica e insuficiencia cardíaca, en 41 ocasiones distintas. Fueron repartidos en 4 grupos: 1. 10 pacientes en grado funcional III-IV; 2. 10 pacientes en grado funcional II sin tratamiento con bloqueadores beta; 3. 11 pacientes en grado funcional II tratados con carvedilol, y 4. 10 pacientes en grado funcional I, que previamente habían tenido insuficiencia cardíaca por disfunción sistólica. El flujo miocárdico (FM) se midió mediante tomografía por emisión de positrones (PET) y N-13 amonio: en condiciones basales y durante la infusión de trifosfato de adenosina (ATP).

Resultados. El FM máximo y la RFC fueron significativamente más altos en el grupo 4 (1.95 ± 0.58 y 2.40 ± 0.95 ml/min/g) que en el grupo 1 (1.02 ± 0.52 y 1.46 ± 0.48 ml/min/g). La RFC tuvo tendencia a ser mayor en los grupos 2 (1.73 ± 0.72) y 3 (1.89 ± 0.75) que en el grupo 1. No hubo correlación significativa entre la RFC y las siguientes variables: edad, presión arterial sistólica, índice de masa ventricular, índices de volumen y fracción de eyeccción de ventrículo izquierdo.

Conclusiones. La función microvascular coronaria está alterada en la insuficiencia cardíaca no isquémica, y dicha alteración se relaciona con la situación funcional, cualquiera que sea la cardiopatía subyacente.

Palabras clave: Tomografía por emisión de positrones. PET. Reserva de flujo coronario. Insuficiencia cardíaca. ATP.

Introduction

The dilatory capacity of the coronary microvascular coronary flow reserve (CFR) is altered in patients with significant coronary lesions. This can also change in the presence of coronary risk factors, with arterial hypertension, in hypertrophic or dilated...
myocardial dysfunction, and in hypertrophy secondary to valve lesions.

CFR has been found to be altered in experimental heart failure. Heart failure is associated with neurohumoral activation and changes in peripheral circulation. It is possible that the increase in cytokines and the reduction in flow influence the development of endothelial dysfunction in these patients. Endothelial dysfunction may contribute to an increase in peripheral vasomotor tone during exercise and to abnormal control of brachial blood flow. One experimental study showed that coronary endothelial dysfunction with reduction of CFR appears before heart failure. It is possible that the vasoconstriction caused by the increase in enothelin-1 has a relationship with these changes, as carvedilol improved heart failure at the same time as it reduced concentrations of this substance.

CFR can be measured by different methods; nevertheless, positron emission tomography (PET) is the only non-invasive technique that provides absolute measurement of overall and regional myocardial blood flow in mL/min/g.

The aim of this study is to verify with PET whether patients in heart failure of non-ischemic origin have a functional alteration in coronary microvasculature, and if this change depends on the severity of the heart failure at the time of the study.

PATIENTS AND METHODS

We studied 40 patients with cardiopathy of non-ischemic origin who were in heart failure, New York Heart Association (NYHA) functional class III-IV, at the time of the study or prior to the study. A total of 41 PET studies were performed to measure the CFR. The study was approved by the ethics committee of our institution and all patients signed an informed consent form. We established the following groups according to the functional level of the patient at the time the study was performed: 1. Ten patients in NYHA class III-IV; 2. Ten patients in NYHA class II who were not receiving beta-blockers; 3. Eleven patients in NYHA functional class II, treated with carvedilol, and 4. Ten patients who had previously had heart failure with an ejection fraction <0.45 and at the time of the study, in addition to being in NYHA functional class I, had an ejection fraction of ≥0.45. Only 1 patient was studied twice: the first time in group 2 and the second time in group 3 (after 1 year of treatment with carvedilol). We obtained a clinical history, physical examination, 12-lead electrocardiogram, echocardiogram, usual blood work, and coronary angiography in all patients. Only patients with significant coronary lesions were included.

Table 1 shows the principal baseline characteristics of each group. Table 2 shows the diagnosis, ejection fraction, and mass and volume index of the left ventricle.

The patients in groups 2, 3, and 4 had previously been in NYHA functional class III-IV and improved with drugs or surgery (in the case of valve lesions). The 4 groups received digitalis, diuretics, and angiotensin converting enzyme inhibitors alone or in combination. In addition to these drugs, all patients in group 3 received carvedilol (the only beta blocker used), at a dose of between 6.25 mg/day and 50 mg/day. Treatment was established according to the criteria of the attending physician for each patient, who in general adjusted to the recommendations based on the evi-

TABLE 1. Baseline characteristics of the different patient groups

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>.127</td>
</tr>
<tr>
<td>Age, years</td>
<td>68±7</td>
<td>58±11</td>
<td>60±10</td>
<td>66±10</td>
<td>.064</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>7 (70)</td>
<td>7 (70)</td>
<td>8 (72.7)</td>
<td>8 (80)</td>
<td>.573</td>
</tr>
<tr>
<td>BMI</td>
<td>29.1±5.7</td>
<td>27.9±3.7</td>
<td>29.2±2.8</td>
<td>24.5±3.7</td>
<td>.064</td>
</tr>
<tr>
<td>Smoking, n (%)</td>
<td>1 (10)</td>
<td>2 (20)</td>
<td>4 (36.3)</td>
<td>1 (10)</td>
<td>.827</td>
</tr>
<tr>
<td>Arterial hypertension, n (%)</td>
<td>3 (30)</td>
<td>6 (60)</td>
<td>7 (63.6)</td>
<td>8 (80)</td>
<td>.343</td>
</tr>
<tr>
<td>Diabetes mellitus, n (%)</td>
<td>2 (20)</td>
<td>0</td>
<td>2 (18.2)</td>
<td>2 (20)</td>
<td>.596</td>
</tr>
<tr>
<td>TC/HDL</td>
<td>5.3±1.7</td>
<td>4.7±1.1</td>
<td>4.3±1.2</td>
<td>4.7±1.5</td>
<td>.499</td>
</tr>
</tbody>
</table>

TC/HDL indicates total cholesterol/HDL cholesterol; BMI, body mass index (weight in kg/quadruple height measurement in m).
dence. Only 1 patient in group 2 was able to be treated with carvedilol, and was then placed in group 3. The remaining patients in group 2 had some type of contraindication for treatment with beta-blockers.

All patients abstained from ingesting caffeine for at least 24 hours prior to the PET study. The patients who smoked stopped smoking for at least 1 week prior to the study. The morning of the study the patients took their usual medications and the PET study was performed in the afternoon.

Positron emission tomography

The transmission and emission images were obtained with a Siemens Ecat Exact HR+ tomograph. This equipment consisted of a system of 32 crystal ring detectors that allowed acquisition, with 32 direct planes and 31 crossed planes, of 63 simultaneous transaxial images that covered a 15.5 cm field, with a 2-dimensional resolution of 4.5 mm in the transaxial plane and 4.5 mm in the axial plane in the center of the viewing field.

Myocardial blood flow (MBF) was measured at baseline and during hyperemia induced by adenosine triphosphate (ATP) using N-13 ammonia and dynamic PET acquisition. First, an emission image was obtained for 15 minutes to correct photon attenuation. After the first intravenous injection of N-13 ammonia (9.25 MBq/kg, up to a maximum of 740 MBq), serial images were obtained at rest, with a variable length dynamic sequence (12 images×10 seconds, 4 images×15 seconds, 4 images×30 seconds, 3 images×300 seconds). The protocol used for PET data acquisition has been described by other authors. After acquisition of the baseline study, we waited 50 minutes to allow N-13 ammonia radioactive fall-out (T1/2=9.9 minutes). ATP was infused for 6 minutes at a dose of 0.160 mg/kg/min. During the infusion cardiac frequency, arterial pressure, and a 12-lead electrocardiogram were monitored continuously. At the 4th minute of the ATP infusion, the second injection of N-13 ammonia was administered. The acquisition of the stress images began from the moment of the injection and followed the same protocol as for the images obtained with the patient at rest.

Image processing. The images were reconstructed using a Hann filter with an 0.4 slice frequency, providing an effective resolution for a 7 mm plane. The transaxial images were reoriented on the short axis and on the long vertical and horizontal axes. The angles of the long horizontal and vertical axes were defined by using the last 3 images from the dynamic sequence, and then were used for the reorientation of the 23-image sequence. For quantitative analysis we used 6 continuous sections of the short axis corresponding to the middle of the left ventricle.

MBF measurement. Regional MBF was calculated in accordance with a 3-compartment model, which represented vascular and extravascular N-13 ammonia, and the N-13 ammonia metabolically trapped in the form of glutamine, which allowed estimation of the constant K1 that represented MBF in mL/g/min.

The informatics program used to calculate the regional MBF was developed by Muzic et al. To determine the radioactivity input function, an area of interest in the most basal planes of the left ventricular cavity on the short axis was delimited. Twelve areas of interest were defined per plane on the 6 planes in the last image of the dynamic sequence. A sample of the collection of dynamic images was taken and 72 activity-time curves were obtained. Regional MBF was analyzed in 4 areas of the left ventricle: anterior, septal, inferoposterior, and lateral.

Statistical analysis

Descriptive statistics were expressed as mean±standard deviation. Quantitative measurements were compared via ANOVA, followed by the Tukey test. The differences in percentages between groups were compared with Fisher exact test (PEPI statistical packet, J.H. Abramson and P.M. Gahlinger, 1993-2000). In order to establish a possible relationship between variables, we used the Pearson product moment correlation test. We calculated the coefficient of variation of the regional MBF at rest in order to evaluate the spatial heterogeneity of myocardial perfusion, determining in each subject the quotient of the standard deviation and the mean regional MBF in 4 areas of the myocardium.

RESULTS

Baseline characteristics

We did not find any significant differences between the 4 patient groups with regard to age, sex, body mass index, smoking habits, diabetes mellitus, arterial hypertension, or the total cholesterol/high density lipoprotein cholesterol quotient (Table 1). Given that CFR tends to be reduced after the age of 70 years, we found that 12 patients were older than 69 years of age: 3 in group 1, 2 in group 2, 2 in group 3, and 5 in group 4 (differences were without statistical significance). We also found no significant differences in the proportion of the various types of cardiopathy among the 4 groups (Table 2). All valvulopathy was rheumatic, mitral or degenerative in nature, with different degrees of stenosis and insufficiency. Three of these patients also had serious tricuspid insufficiency. Only 1 patient had restrictive myocardial thickening of unknown cause. Eight of the patients in group 4 were diagnosed with dilated myocardial hypertrophy (hypertensive in origin in 6 patients). Ten patients in this group, who previously...
TABLE 2. Diagnosis and echocardiographic variables in each patient group

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilated myocardiopathy, n (%)</td>
<td>6 (60)</td>
<td>3 (30)</td>
<td>8 (72.7)</td>
<td>8 (80)</td>
<td>.671</td>
</tr>
<tr>
<td>Mitroaortic valvulopathy, n (%)</td>
<td>4 (40)</td>
<td>6 (60)</td>
<td>3 (27.3)</td>
<td>2 (20)</td>
<td>.654</td>
</tr>
<tr>
<td>Restrictive myocardiopathy, n (%)</td>
<td>0</td>
<td>1 (10)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ejection fraction, %</td>
<td>35±19</td>
<td>43±15</td>
<td>34±14</td>
<td>52±5</td>
<td>.045</td>
</tr>
<tr>
<td>LV mass index, g/m²</td>
<td>149±48</td>
<td>159±76</td>
<td>136±49</td>
<td>128±28</td>
<td>.524</td>
</tr>
<tr>
<td>LV TDD index, mL/m²</td>
<td>122±68</td>
<td>113±49</td>
<td>125±45</td>
<td>92±35</td>
<td>.508</td>
</tr>
<tr>
<td>LV TSV index, mL/m²</td>
<td>83±66</td>
<td>67±42</td>
<td>81±42</td>
<td>43±19</td>
<td>.186</td>
</tr>
</tbody>
</table>

*Group 4 versus groups 1 and 3. LV indicates left ventricle; TDD, telediastolic volume; TSV, telesystolic volume.

TABLE 3. Hemodynamic variables and coronary flow in baseline conditions and with ATP infusion

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP, mm Hg</td>
<td>135±22</td>
<td>139±22</td>
<td>137±15</td>
<td>154±37</td>
<td>.391</td>
</tr>
<tr>
<td>Baseline CF × SAP</td>
<td>10 287±2073</td>
<td>9360±2439</td>
<td>10 120±2690</td>
<td>9388±2937</td>
<td>.753</td>
</tr>
<tr>
<td>CF×SAP with ATP</td>
<td>10 448±2073 11</td>
<td>160±2020</td>
<td>12 551±2987</td>
<td>11 213±3957</td>
<td>.461</td>
</tr>
<tr>
<td>MBF, mL/g/min</td>
<td>0.69±0.25</td>
<td>0.75±0.24</td>
<td>0.70±0.14</td>
<td>0.90±0.35</td>
<td>.225</td>
</tr>
<tr>
<td>Normalized MBFb</td>
<td>0.67±0.16</td>
<td>0.81±0.19</td>
<td>0.73±0.22</td>
<td>1.03±0.53</td>
<td>.07</td>
</tr>
<tr>
<td>MBFcorr</td>
<td>1.02±0.52</td>
<td>1.40±0.71</td>
<td>1.37±0.71</td>
<td>1.95±0.58</td>
<td>.03*</td>
</tr>
<tr>
<td>CFR (MBFcorr/MBFb)</td>
<td>1.46±0.48</td>
<td>1.73±0.72</td>
<td>1.89±0.75</td>
<td>2.40±0.95</td>
<td>.03</td>
</tr>
<tr>
<td>Baseline coronary resistance</td>
<td>143±43</td>
<td>127±35</td>
<td>139±28</td>
<td>129±57</td>
<td>.773</td>
</tr>
<tr>
<td>ATP coronary resistance</td>
<td>95±35</td>
<td>89±47</td>
<td>88±49</td>
<td>54±24</td>
<td>.114</td>
</tr>
</tbody>
</table>

*Group 4 versus group 1. ATP indicates adenosine triphosphate; CF, cardiac frequency in beats/min; MBF, myocardial blood flow; MBFb, baseline MBF; SAP, systolic arterial pressure; CFR, coronary flow reserve.

had a reduced ejection fraction and were in NYHA functional class III-IV, improved with treatment. At the time of the study they were in NYHA functional class I with a normal ejection fraction.

The ejection fraction was significantly higher in the patients in group 4 than those in groups 1 and 3. We did not observe a significant difference between groups 2 and 4. This was due to the fact that some patients in group 2, with valve lesions, had normal ejection fractions. There was no significant difference between patient groups with regard to left ventricle mass and volume indices (Table 2).

Hemodynamic findings

Table 3 shows that there was no significant difference in baseline arterial systolic pressure among the 4 patient groups. The double product (cardiac frequency ×arterial systolic pressure), indicative of the consumption of myocardial oxygen, increased slightly but significantly (P=.001) with ATP. There were no significant differences in this parameter among the 4 groups either at rest or during the infusion of ATP.

Myocardial flow

There was no significant spatial heterogeneity (P=.798) in baseline regional myocardial blood flow (BMFB) between the 4 myocardial regions studied: anterior, septal, inferoposterior, and lateral. For this reason, we only analyzed the overall BMFB.

MBF, coronary resistance and CFR

Table 3 shows that there was no significant difference in MBF among the 4 groups. As BMFB increases when the double product is raised,21 we calculated the normalized BMFB (quotient of BMFB×10 000/double product). We did not find significant differences between the 4 groups, although we did note higher values in group 4 and lower values in group 1. MBFATP was significantly higher in group 4 than in group 1.

Given than ATP disrupted the relationship between MBF and cardiac load, hyperemic flow was not corrected for the double product. The CFR (uncorrected BMFATP/BMFb) was significantly higher in group 4 than in the other groups. Figure 1 shows the uncorrected BMFB the BMFATP, and the CFR in the 4 patient groups. Compared with reported CFR values21 (3.01±0.73) in healthy volunteers of 64 years of age±9 years of age, the CFR was clearly reduced in the 4 patient groups, especially in group 1. Although the CFR was slightly higher in groups 2 and
3 than in group 1, only group 4 had values that were significantly higher than group 1. The patient who underwent 2 PET studies had a CFR of 1.63 when in group 2 and of 2.99 when included in group 3, after a year of treatment with carvedilol. The ejection fraction was 0.25 during the first study and 0.35 during the second study.

There was no significant correlation between CFR and: age (r=0.171; \(P=0.143 \)), systolic arterial pressure (r=-0.022; \(P=0.445 \)), ejection fraction (r=0.096; \(P=0.275 \)), left ventricle mass index (r=0.047; \(P=0.388 \)), left ventricular telediastolic volume index (r=0.025; \(P=0.439 \)), or left ventricular telesystolic volume index (r=0.056; \(P=0.368 \)).

None of the following co-variables significantly changed the CFR: age, body mass index, ejection fraction, total cholesterol/HDL cholesterol quotient, or left ventricular mass or volume indices. Sex, smoking habits, diabetes, and arterial hypertension likewise did not affect the differences between the patient groups (data not expressed).

DISCUSSION

CFR in heart failure

Our study shows for the first time with PET that patients with heart failure that is non-ischemic in origin, whatever the etiology, have depressed CFR, which is related to their functional class. The CFR was 1.46±0.48 in patients in NYHA functional class III-IV; 1.73±0.72 and 1.89±0.75 in patients in NYHA functional class II (with and without carvedilol, respectively), and 2.40±0.95 in patients in NYHA functional class I. These differences cannot be attributed to age, which was similar for patients in all 4 groups. Actually, it is not clear whether CFR diminished in the elderly (patients >69 years of age) due to deficient dilation of coronary microvasculature or due to an increase in cardiac load (double product), which elevated the BMFb\(^{29}\) CFR measured in healthy volunteers of a similar age to that of our patients was 3.01±0.73.\(^{21}\) In our study, the difference in CFR between the patients in groups 1 and 4 was significant. Theoretically, ventricular dysfunction can influence the diminishment of CFR. Nevertheless, in our patients, neither the ejection fraction nor the ventricular volume indices, taken as co-variables, significantly changed the results. It is probable that the functional class was more a determinant of CFR than the underlying cardiac disease.

Previous studies

PET and intracoronary echo-Doppler studies\(^{22}\) of patients with dilated myocardiopathy and heart failure have shown a reduction in CFR. Intracoronary Doppler reveals endothelial dysfunction in patients with both microvascular and epicardial dilated myocardiopathy.\(^{23}\) Peripheral resistance is elevated in heart failure\(^{12}\) and brachial hyperemic flow is reduced due to endothelial dysfunction.\(^{13}\)

Our study was performed with ATP. This drug, similar to adenosine,\(^{24}\) had been shown to be useful in myocardial perfusion studies,\(^{25}\) and some studies\(^{26}\) report that its vasodilator effect is dependent on the endothelium.
Cardiac hypertrophy

The majority of our patients had dilated myocardio-
pathy or mitroaortic valve disease. Dilated myocardio-
pathy is associated with reduced CFR in the absence
of heart failure, probably due to vasodilatation anom-
aliest. The progression of this disease is associated
with greater depression of myocardial perfusion, both at
rest18 and after the administration of dipiridamol. This
depression cannot be totally explained by the ele-
vation of left ventricular diastolic pressure or by redu-
ced coronary perfusion pressure.22 Arterial hyperten-
sion is another cause of the reduction of CFR, partly
due to structural arterial changes. Nevertheless, CFR
in hypertrophy secondary to valvulopathy has been
studied less frequently. One study8 showed less change
in the CFR in ventricular hypertrophy secondary to
aortic stenosis than in arterial hypertension. Our pa-
tients had a decrease in CFR related to the functional
class of their heart failure, and not to the type of un-
derlying heart disease. These findings suggest that
heart failure, on its own, may change coronary microvas-
cular dilation, independent of its cause. This change was
in addition to that produced by their baseline car-
diopathy.

Neurohumoral factors

In heart failure there is an increase in different neu-
rohumoral and inflammatory factors30,31 that can indu-
ce not only peripheral vasoconstriction, but also coro-
nary vasoconstriction. It is possible to diminish the
vasoconstriction when the heart failure is controlled
and these factors are reduced. We believe that this is
the most likely explanation for our findings, although
the study itself does not allow confirmation of this.
It is also unknown how much time is needed for the CFR
to normalize when heart failure improves clinically.
The patients in group 4, in NYHA functional class I,
are those who had the highest CFR. Although their
ejection fraction had normalized by the time the study
was performed, this variable had no significant rela-
tion to the CFR. This fact may indicate that the dimi-
nishment of CFR was not due to a decrease in the need
for oxygen in the face of a reduced ejection fraction,
but to a microcirculation problem.

Carvedilol

The patients in group 3, who were being treated with
carvedilol, had a tendency toward a higher CFR than
those in group 2, who were in the same functional
class, although their ejection fraction was somewhat
higher (but without statistical significance) in group 3.
This may be attributable to the reduced BMFB in
group 3 (Table 3). Nevertheless, the patients in group
1 had a lower CFR (but without statistical significan-
t) than those in group 3, in spite of having a lower
BMFB (not statistically significant). The patient who
underwent 2 different studies (with and without carve-
dilol) had an increase in CFR with carvedilol that was
disproportionate to the increase in the ejection frac-
tion. Carvedilol is a beta and adrenergic alpha-1 anti-
gonist that also has antioxidant32 and antiendothelin-1
properties.33 These properties may explain, at least in
part, the slightly elevated CFR in group 3. A previous
study14 showed that the plasma changes in endothelin-
1 reflect the clinical response to carvedilol in patients
with heart failure. Several patients in group 4, who
were those patients who had the highest CFR, also re-
ceived carvedilol.

Study limitations

1. We did not have a fifth group of healthy volun-
teeers of similar ages to compare with the 4 patient
groups, but we believe that they can be compared with
the healthy volunteers of a similar age in the study by
Czernin et al31 as these authors used methods similar
to ours and obtained results similar to ours (unpublis-
hed data) in young volunteers.

2. It would have been ideal to have studied the same
patients in 4 different situations during the course of
their illness, but this was not possible. The majority of
the patients in group 1 received a heart transplant or
died. In contrast, the patients in group 2 had some con-
traindication for treatment with beta blockers.

3. Mixing patients with valve disease with patients
with cardiomyopathy could be considered a limitation.
Nevertheless, CFR is changed with both pathological
processes. In figure 1 it can be seen that there is no ap-
preciable difference in the standard deviation among
the patient groups; therefore, from the statistical point
of view, there is no heterogeneity amongst them.
There was only a significant difference in the ejection
fraction, which was higher in group 4, as it was a se-
lection criterion for this group. If group 4 had been
made up of healthy volunteers, their greater CFR
would have to be attributed to the absence of cardio-
pathy. Nevertheless, the group was made up of pa-
ients with cardiopathy whose heart failure had im-
proved; therefore, the difference between group 4 and the
rest of the groups must be attributed to their distinct
functional class, once the existence of a correlation
between hemodynamic variables and CFR was discar-
ded.

CLINICAL IMPLICATIONS

CFR measured with PET provides greater knowled-
ge of the coronary microvascular physiopathology in
non-ischemic heart failure. Patients who are in a better
functional class are those who present with higher
CFR levels. If low CFR is due to a primary microcirci-
culatory problem, as it seems to be, microcirculation must be a therapeutic objective. Other studies are needed with evolutionary followup to establish a possible relationship between CFR, neurohumoral and inflammatory factors, and the prognosis of patients in heart failure.

ACKNOWLEDGEMENTS

The authors are grateful to Iván Peñuelas for the preparation of the radiotracers during the PET studies and to Javier Díez for his scientific assessment.

REFERENCES