Vascular Risk, Diabetes and the Ankle-Brachial Index

Riesgo vascular, diabetes e índice tobillo-brazo

To the Editor,

We have read with great interest the article by Baena-Díez et al. published in Revista Española de Cardiología. In an extensive population-based study, the authors’ objective is to determine the usefulness of the ankle-brachial index (ABI) in reclassifying low or intermediate cardiovascular risk patients to a higher category. Their main conclusion is that ABI reclassifies a substantial proportion of patients towards the high-risk category and that this is especially the case in women and by comparison with REGICOR function scores. While we do not wish to cast doubt on this conclusion, we believe that including patients with diabetes may have somewhat distorted their findings. The prevalence of patients with diabetes (57 of 204 patients with ABI <0.9) could have increased the proportion of those with ABI <0.9 following statin, antihypertensive drug or antiplatelet agent regimens (as well as hypoglycemic treatments), and led to the percentage of patients with LDL <100 mg/dL in the low ABI group exceeding that found in the normal ABI group. This might explain their greater comorbidity and closer adherence to clinical practice guidelines. Given that patients with diabetes were not excluded, we cannot determine the number of low- or intermediate-risk patients with this problem—and it may well be considerable as one Spanish series reported a median 4.4 SCORE risk for patients with diabetes. Although it can be argued that type 2 diabetes is not an equivalent to coronary disease in northeastern Spain, it is no less certain that diabetes—indeed independently of age and sex—is a predictor of ABI <0.9, as this very study confirms, and that ABI <0.9 appears in <27% of ambulatory patients with type 2 diabetes.

In our opinion, except in patients with type 2 diabetes, measuring ABI in low-risk patients is probably of little clinical value and may be inefficient. In our experience, only 2% of patients aged >50 years present ABI <0.9 and are classified as low-risk using the Framingham Risk Score and SCORE risk functions; 4 out of 9 patients with ABI <0.9 present intermittent claudication; in the same series, 33% of patients with ABI <0.9 had intermittent claudication. We share Baena-Díez et al’s concern to determine which patients should be prioritized for ABI measurement; perhaps, in those at low- or intermediate-risk, the presence of claudication or diabetes could serve as a guide.

Pedro Valdivielso, a José Mancera-Romero, b and Miguel Angel Sánchez-Chaparro a

*Servicio de Medicina Interna, Hospital Virgen de La Victoria, Málaga, Spain
bCentro de Salud de Ciudad Jardín, Málaga, Spain

* Corresponding author: E-mail address: Valdivielso@uma.es (P. Valdivielso).

Available online 17 June 2011

REFERENCES


SEE RELATED ARTICLES:
DOI: 10.1016/j.rec.2010.10.024
DOI: 10.1016/j.rec.2011.04.003

Vascular Risk, Diabetes, and the Ankle-Brachial Index. Response

Riesgo vascular, diabetes e índice tobillo-brazo. Respuesta

To the Editor,

We would like to thank Valdivieso et al. for their interesting comments on the article by our ARTPER research group published in Revista Española de Cardiología. With regard to a possible distortion of results caused by including patients with diabetes, we do not believe this constitutes an important limitation. The same could be said about the inclusion of patients with high blood pressure who, due to their higher cardiovascular risk, would also more frequently receive antihypertensive treatments and possibly statins or antiplatelet agents. In fact, risk attributable to high blood pressure is greater than that of diabetes, as the magnitude of the effect does not differ excessively but prevalence is greater.

We agree that ankle-brachial index (ABI) measurement is of less clinical interest in low-risk than in intermediate-risk patients. Fortunately, there is a tool (REASON) that prioritizes ABI use, developed by the HERMES group and our own ARTPER group. To date, the Inter-society Consensus (TASC II) recommended measuring ABI in asymptomatic patients aged 50–69 years with diabetes or a history of smoking, at 70 years and older, and when cardiovascular risk is 10% to 20%. The REASON tool—which has been constructed and validated—establishes a score as a function of the risk factor profile to identify patients with a high probability of having ABI <0.9; it has 85.2% sensitivity, similar to TASC II, and 47.2% specificity, greater than TASC II (38.3%). How often ABI should be measured and/or repeated remains to be determined. This will require cohort follow-up studies and the consensus of groups of experts.
José M. Baena-Díez, a,b,* María T. Alzamora, c,d,e Rosa Forés, c and Guillem Pera, c on behalf of the ARTPER study

aCentro de Salud La Marina, Institut Català de la Salut, Barcelona, Spain
bIDIAP Jordi Gol, Institut Català de la Salut, Barcelona, Spain
cCentro de Salud Riu Nord-Riu Sud, Institut Català de la Salut, Santa Coloma de Gramenet, Barcelona, Spain
dDepartament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
eUnitat de Recerca Metropolitana Nord, Institut Català de la Salut, Mataró, Barcelona, Spain

*Corresponding author: E-mail address: jbaena@imim.es (J.M. Baena-Díez).

Available online 16 June 2011

REFERENCES


doi:10.1016/j.jrec.2011.04.003

SEE RELATED ARTICLE:
DOI: 10.1016/j.rec.2011.03.029

Inequalities for Which We Have No Explanation, a Reproducible Phenomenon in Different Local Health Districts

Desigualdades para las que no tenemos explicación, un fenómeno reproducible en distintas áreas poblacionales

To the Editor,

We read with attention the article by Riesgo et al.1 about sex-related differences in the treatment of patients with atrial fibrillation in which the authors convincingly demonstrate that the management of said disease is different in women. Our opinion is that this phenomenon has long been reproducible in any cardiovascular disease.2

Riesgo et al. point to these differences as the reason for more conservative management, which they attribute to the longer time course between presentation and diagnosis of the arrhythmia in women. On the other hand, the authors maintain that, by broadening the evaluation to cover a health district, their study design avoided the selection biases of other studies focused more specifically on tertiary care or referral centers for the treatment of atrial fibrillation, a circumstance that sometimes results in differences. At the end of the discussion section, the authors intuit certain inequalities for which they have no explanation.

A recent atrial fibrillation registry of 798 patients, with the participation of general practitioners in a region of Galicia in northwestern Spain,3 presents data that are fully reproducible since, despite their having a significantly shorter disease course than the men in the registry, fewer women had undergone electrical cardioversion (5% vs 10%) and more of them were being treated with digoxin (41% vs 30%). These results may again reflect the trend toward a sex-related conservative management, as occurs in other cardiovascular diseases, except that, in addition to failing to provide them with a beneficial treatment, in this case a higher proportion of women receives a treatment that is customarily associated with a worse adaptation to exercise, the major indication for which in the latest guidelines for atrial fibrillation is an inactive lifestyle, and that “may cause (life-threatening) adverse effects and should therefore be instituted cautiously.”4

Rafael Vidal-Pérez, a,b Fernando Otero-Ravinha, b Pilar Mazón Ramos, a and José Ramón González-Juanateya a Servicio de Cardiología, Hospital Clínico Universitario de Santiago, Santiago de Compostela, A Coruña, Spain bSección de Coordinación Asistencial, SERGAS, Santiago de Compostela, A Coruña, Spain

*Corresponding author: E-mail address: rafavidal@hotmail.com (R. Vidal-Pérez).

Available online 14 June 2011

REFERENCES


doi:10.1016/j.jrec.2011.03.026

SEE RELATED ARTICLES:
DOI: 10.1016/j.rec.2011.04.006
DOI: 10.1016/j.rec.2010.04.002