Scientific letters

The V-Wave Device for the Treatment of Heart Failure. Initial Experience in Europe

Dispositivo V-Wave para el tratamiento de la insuficiencia cardíaca. Experiencia inicial en Europa

To the Editor,

Left heart failure is the final manifestation of various heart diseases involving left ventricular dysfunction, such as ischemic heart disease.1 Due to treatment advances, the prevalence of left heart failure is growing, but its natural course is associated with a continual decrease in quality of life, rehospitalizations, and early mortality.2 Previous studies have shown that tight control of left atrial pressure is associated with improved ventricular function and functional class, suggesting that this strategy could improve prognosis.1

The V-Wave device (V-Wave Ltd, Or Akiva, Israel) is based on this concept and on past experience of the creation of interatrial shunts to treat patients with congenital heart disease or ventricular assist devices.3–5 The V-Wave device, which permanently reduces left atrial pressure, is composed of an hourglass-shaped nitinol frame with a polytetrafluoroethylene polymer coating on its left side and a valve with 3 bovine pericardium leaflets on its right side to prevent paradoxical embolisms and early shunt closure (Figure).

The first patient was described in Canada6 and the technology has recently been introduced in Europe, where the first 2 implants were successfully performed with the approval of the Agencia Española de Medicamentos y Productos Sanitarios (Spanish Agency for Medicines and Medical Devices). The selection criteria for this first-in-man study are summarized in the Table. Detailed clinical (Kansas City Cardiomyopathy Questionnaire [KCCQ]) and functional (6-minute walk test) tests were performed, as well as measurement of the aminoterminal fraction of brain natriuretic peptide (NT-proBNP) and right heart catheterization.

The first patient was a 73-year-old man with partially revascularized chronic ischemic heart disease and a cardiac resynchronization therapy device. He had severe left ventricular dysfunction (24%), moderate mitral regurgitation (II/IV), and acceptable right ventricular function (tricuspid annular plane systolic excursion [TAPSE] of 14 mm). His 6-minute walk test distance was 253 meters and his KCCQ score was 35.42, and the right heart catheter showed cardiac output of 3.5 L/min.

Figure. A: advancement of the sheath until the left atrium via the fossa ovalis. B, C, and D: images from angiography (B), bench testing (C), and 3D echocardiography (D) of the opening of the left part of the device in the left atrium. E, F, and G: images from bench testing (E), angiography (F), and color Doppler echocardiography (G) of the unfolded V-Wave.
pulmonary capillary pressure of 26 mmHg, and right atrial pressure of 10 mmHg. The patient’s NT-proBNP level was 3341 pg/mL.

The second patient was a 70-year-old man with surgically and percutaneously revascularized ischemic dilated cardiomyopathy and a cardioverter-defibrillator. He had left ventricular dysfunction (28%), moderate mitral regurgitation (II/IV), and TAPSE of 19 mm. His 6-minute walk test distance was 236 meters and his KCCQ score was 42.45, and the right heart catheter showed cardiac output of 4.8 L/min, pulmonary capillary pressure of 16 mmHg, and right atrial pressure of 5 mmHg. The patient’s NT-proBNP level was 1526 pg/mL.

Despite receiving optimal medical therapy and high-dose diuretics (120 mg and 80 mg, respectively), both patients showed New York Heart Association (NYHA) functional class III dyspnea and orthopnea. Approval was obtained from a committee of heart failure experts and, once an informed consent form had been signed, we decided to implant the V-Wave device. The procedure was performed under general anesthesia to improve the tolerability of transesophageal echocardiography. The right atrium was accessed via a femoral vein approach, a transseptal puncture was made at the level of the fossa ovalis, and a 14-Fr sheath was inserted into the left atrium (Figure A-D). The device was attached to a delivery catheter and advanced through the sheath until its first portion opened in the middle part of the left atrium. Once correct apposition of the device to the septum was confirmed, the device was released from the delivery catheter. After a slight pull of the sheath, the second part of the device opened in the right atrium and the correct fixation of the device in the interatrial septum was confirmed (Figure E-G; see the video of the supplementary material). Following implantation, the left-right shunt was immediately visualized in both patients via transesophageal echocardiography (Figure G). Both patients were discharged 24 hours after the procedure with no complications and with instructions for 3-month oral anticoagulation therapy, during which time no other therapeutic modifications could be performed according to the protocol.

At a 3-month follow-up, the V-Wave device was patent and both patients were in NYHA functional class II, without orthopnea and with KCCQ scores of 62.5 and 63.54, respectively. Improvements were also evident in objective parameters, such as increases of 27.3% and 19.0% in the 6-minute walk test distance, NT-proBNP values of 2663 pg/mL and 1129 pg/mL, cardiac output of 4.6 L/min, and pulmonary capillary pressure of 23 mmHg for the first patient (Qp:Qs = 1.3) and 5.2 L/min and 12 mmHg for the second (Qp:Qs = 1.2). Nonetheless, the promising results of this new therapeutic approach require long-term validation.

Acknowledgments

We thank Drs. Gimeno, López, Arnold, de la Fuente, Urueña, Pastor, and Mota for their vital contributions to the success of this project.

CONFLICTS OF INTERESTS

J. Rodés-Cabau is a consultant for V-Wave Ltd.

SUPPLEMENTARY MATERIAL

Supplementary material associated with this article can be found in the online version available at doi:10.1016/j.rec.2015.04.015.

Ignacio J. Amat-Santos,a,b* Luis Nombela-Franco,b Bruno García,c Javier Tobar,c Josep Rodés-Cabau,c and José A. San Román*a

aInstituto de Ciencias del Corazón (ICICOR), Hospital Clínico Universitario, Valladolid, Spain
bServicio de Cardiología, Hospital Clínico Universitario San Carlos, Madrid, Spain
cServicio de Cardiología, Hospital Universitario Vall d’Hebron, Barcelona, Spain

dDepartament de Cardiologia, Institute de Cardiologia e Pneumologia de Québec (IUCPQ), Quebec City, Quebec, Canada

* Corresponding author:
E-mail address: ijamat@gmail.com (I.J. Amat-Santos).
Available online 14 July 2015

REFERENCES

Transapical Valve-in-valve Implantation in Failed Mitral Bioprostheses

Implante transapical de prótesis valvular mitral sobre bioprótesis degeneradas

To the Editor,

Reoperation for mitral bioprosthesis dysfunction is a challenging procedure due to patients’ clinical status and the technical difficulties associated with resecting the prosthesis and implanting a new valve in the weakened mitral annulus; in addition, the redo surgery carries the risk of structural damage to the myocardium and perivalvular leakage.

Transcatheter valve-in-valve implantation into a deteriorated mitral bioprosthesis is a little used technique but in complex patients it provides an alternative to conventional surgery that avoids cardiac dissection, extracorporeal circulation, and myocardial ischemia. Most prostheses are implanted via the transapical route because this approach provides direct coaxial access to the valve with shorter delivery catheters; however, another access option is the femoral vein, followed by perforation of the interatrial septum and anterograde valve implantation.

From January 2007 to September 2014, the surgical team at our center performed 70 implantations via the transapical route. In 6 patients, a new valve was implanted in a deteriorated prosthesis: 4 in the aortic position and 2 in the mitral position. The clinical characteristics of the 2 patients selected for the mitral procedure are summarized in the Table.

Both mitral valve implantations were carried out under general anesthesia in the cardiac catheterization laboratory by 2 surgeons and a cardiac catheterization specialist. A left anterior minithoracotomy was performed through the fifth or sixth intercostal space, and transapical access through the pericardial opening was secured by 2 U sutures with teflon-supported 3/0 monofilament suture thread. The ventricular apex was punctured with a guidewire, which was advanced through the opening of the mitral prosthesis into the left atrium. To prevent traumatic perforation of the atrial wall, this guidewire was then exchanged for a preformed high-support guidewire. Coaxial alignment with the ring of the deteriorated bioprosthesis was guided by radiology and echocardiography. This procedure was more challenging with the Epic bioprosthesis because its annulus is only faintly radiopaque; in contrast, the Perimount bioprosthesis, in addition to having a larger annulus, also has a radiopaque supporting stent. After balloon predilatation, an Edwards SAPIEN XT Transcatheter Heart Valve (Edwards Lifesciences, Irvine, California, United States) was implanted in the opposite orientation to that of a transapical aortic valve implant, following the standard protocol with rapid endocardial pacing (Figure). The valve sizes used were 23 mm for patient 1 and 26 mm for patient 2. These sizes were chosen according to the manufacturer–specified internal diameters of the original bioprostheses, which were consistent with direct measurements by transesophageal echocardiography (23 mm for the 25-mm Perimount valve and 24.5 mm for the 27-mm Epic valve). In both patients the procedure was completed without technical incident, and correct implantation was confirmed by intraoperative transesophageal echocardiography.

Patient 1 developed cardiogenic shock in the first hours after implantation, with biventricular dysfunction, acute renal failure, and elevated hepatic enzymes; the condition was reversed by amine therapy and the placement of an intra-aortic counterpulsation balloon for 72 hours. The discharge echocardiogram showed normal function of the mitral bioprosthesis, a left ventricular ejection fraction of 35%, and a systolic pulmonary arterial pressure of 70 mmHg.

Patient 2 was extubated 8 hours after device implantation, and did not require amine therapy at any time. During hospitalization,

Table

<table>
<thead>
<tr>
<th></th>
<th>Patient 1</th>
<th>Patient 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>79</td>
<td>82</td>
</tr>
<tr>
<td>Sex</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>PVD</td>
<td>PVD, spondylodiscitis, prosthesis dysfunction(^a)</td>
</tr>
<tr>
<td>Prosthesis type</td>
<td>25-mm Perimount</td>
<td>27-mm Epic</td>
</tr>
<tr>
<td>Mitral valve disorder</td>
<td>Moderate combined regurgitation and stenosis</td>
<td>Severe regurgitation</td>
</tr>
<tr>
<td></td>
<td>MVA: 1.1 cm(^2), MR: grade III</td>
<td>MVA: 2.2 cm(^2), MR: grade IV</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>SPAP, mmHg</td>
<td>65</td>
<td>95</td>
</tr>
<tr>
<td>NYHA functional class</td>
<td>III</td>
<td>III</td>
</tr>
<tr>
<td>Logistic EuroSCORE 1</td>
<td>58.12</td>
<td>44.47</td>
</tr>
</tbody>
</table>

\(^a\) 2014: Severe mitral regurgitation due to perforation of a prosthetic leaflet. Imaging results were consistent with endocarditis, but the patient had no fever, and blood cultures were negative.

\(^b\) 2012: Prosthesis replaced due to endocarditis caused by Abiotrophia defectiva.