transmembrane action potential shape (slow rise time and long duration). The addition of this small change to the transmembrane action potential of the subepicardium explains the J-point depression and the tall T wave in the electrocardiographic tracing.

The “De Winter pattern” is just another of the confounding patterns observed throughout the development of STEACS with which health care professionals treating these patients should be familiar, because a delay in the diagnosis leads to large myocardial infarctions.

Miquel Fiol Sala, a Antonio Bayés de Luna, b Andrés Carrillo López, c and Javier García-Niebla d,e

a Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Islas Baleares, Spain
b Instituto Catalá de Ciencias Cardiovasculares, Hospital Santa Creu i Sant Pau, Barcelona, Spain
c Unidad Coronaria, Hospital Son Espases, Palma de Mallorca, Islas Baleares, Spain
d Servicios Sanitarios del Área de Salud de El Hierro, Centro de Salud Valle del Golfo, Frontera, Sta. Cruz de Tenerife, Spain

* Corresponding author:
E-mail address: jniebla72@hotmail.com (J. García-Niebla).
Available online 24 September 2015

REFERENCES


See related article:
http://dx.doi.org/10.1016/j.rec.2015.02.014
http://dx.doi.org/10.1016/j.rec.2015.08.004
http://dx.doi.org/10.1016/j.rec.2015.07.006

The “De Winter Pattern” Can Progress to ST-segment Elevation Acute Coronary Syndrome. Response

El “patrón de De Winter” puede evolucionar a síndrome coronario agudo con elevación del segmento ST. Respuesta

To the Editor,

We are grateful to Fiol Sala et al for their comments regarding our publication.1 In their experience, “the De Winter ECG pattern” could be explained by incomplete occlusion of the left anterior descending artery, which would explain the absence of ST elevation. This affirmation is in contrast to the observations of the De Winter group,3 who highlighted the invariability of the ECG pattern from first medical contact until arrival in the catheterization laboratory, as most patients (86%) had TIMI flow 0 or 1 on coronary angiography. The presence or absence of collaterals does not appear to be a determinant either, given that only 28% of cases in that series had collaterals (Rentrop 2–3) in the territory of the left anterior descending artery. The role of ischemic preconditioning in this context is unknown. The above series did not mention the existence of angina prior to the episode that could have indicated intermittent occlusion of the artery before complete thrombosis. None of our patients had previous angina symptoms. In contrast to the case described by Dressler et al,3 in which presumably there was complete occlusion of the proximal left anterior descending artery despite the absence of angiographic confirmation, coronary reperfusion prevented observation of further ECG evolution. Therefore, we concur with Fiol Sala et al that ST-elevation is possible in the absence of coronary flow restoration.

In the case presented by Fiol Sala et al, Figure B does not show the characteristic “De Winter pattern” of ST-depression at the J-point, by which we mean that it is not a valid example to illustrate the previously presented concept.

We appreciate the proposed pathophysiological mechanism, which is added to those previously suggested.2,4 However, the characteristic large infarct extension and subsequent ECG evolution after angioplasty indicate involvement beyond the subendocardium. This is in contrast to previous observations that related ST-segment-depression with prominent positive T waves to localized subendocardial ischemia.4

José M. Montero-Cabezas,* Frank van der Kley, Ioannis Karalis, and Martin J. Schalij

Interventional Cardiology Unit, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands

*Corresponding author:
E-mail address: jmmonterocabezas@gmail.com (J.M. Montero-Cabezas).
Available online 26 September 2015

REFERENCES


See related article:
http://dx.doi.org/10.1016/j.rec.2015.07.006
http://dx.doi.org/10.1016/j.rec.2015.08.004