Figure. HADS scores during the waiting-list period and at 12-months’ follow-up after the transplantation. HT, heart transplantation; HADS, Hospital Anxiety and Depression Scale; heart transplantation. Values are expressed as mean ± standard deviation.

an improvement in psychological parameters at 12-months’ follow-up.

Roberto Sánchez, Eva Baillès, Anna Bastidas, Félix Pérez-Villa, Antonio Bulbena, and Luis Pintor

Department of Psychiatry, Institute of Neuropsychiatry and Addictions, Parc de Salut Mar, Barcelona, Spain

Department of Psychiatry and Medicine Legal, Faculty of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain

*Corresponding author:
E-mail address: 39639rsg@gmail.com (R. Sánchez).

Available online 27 October 2015

REFERENCES

http://dx.doi.org/10.1016/j.reec.2015.07.025

Influence of Gender and Cardiovascular Risk on the Control of Low-density Lipoprotein in a Population From Extremadura

Control de lipoproteínas de baja densidad en población extremeña en función del sexo y del riesgo cardiovascular

To the Editor,

The latest European Society of Cardiology and European Atherosclerosis Society guidelines for the management of dyslipidemias propose the definition of 4 levels of cardiovascular risk (very high, high, moderate, and low) to facilitate decision making and selection of the best therapeutic strategy. However, several studies indicate that different diagnostic and therapeutic approaches to cardiovascular risk (CVR) are used for women and men, both in primary and in secondary prevention; pharmacological undertreatment is common among women in secondary prevention or at high CVR, whereas there is a tendency to overtreat women at low CVR.

The goal of this study was to evaluate the control of lipoprotein concentrations and the prescription of lipid-lowering drugs in the different stratification categories for CVR. CVR was estimated using the calibrated Framingham function from the REGICOR study in participants aged ≥ 35 years (1170 women and 1042 men) in the HERMEX study, based in Extremadura, Spain. Participant parameters included history of risk factors and cardiovascular diseases, anthropometric measures, blood pressure, ankle-brachial pressure index, medication with lipid-lowering drugs, and blood analyses. Data were analyzed with SPSS 22.0 for Windows. Significance of differences between mean values was calculated by Students’ t test, and between median values by the Mann–Whitney U test; significance of differences between proportions was calculated with the chi-square test or Fisher’s exact test. Multivariable analysis was conducted by logistic regression, using the “Enter” method, with the dependent variable defined as achievement or nonachievement of the target values for low-density lipoprotein cholesterol (LDL-C) in the very high or high CVR categories. Independent variables included all those showing an association at P < .10 in the bivariable analysis and others associated in the literature with the use of lipid-lowering drugs, such as age, a history of smoking, obesity, diabetes mellitus, hypertension, peripheral artery disease, or chronic kidney disease.

The mean age of the study population was 53.3 years. Of the participants, 31.2% were smokers and 35.4% fulfilled the criteria for hypercholesterolemia: 48.5% of participants considered to be hypercholesterolemic were receiving treatment with lipid-lowering drugs (46.9% of men compared with 50.0% of women; P < .05) (Table 1).

Analysis of CVR distribution showed that 27.1% of men were in the very high or high risk categories compared with 20.8% of women (P < .05). In contrast, 75.6% of women were at low CVR compared with 56.8% of men (P < .001). Of participants at very high or high CVR, 51.9% of men were taking lipid-lowering drugs vs 33.7% of women (P < .05); in the low CVR category, 8.8% of men were taking lipid-lowering drugs vs 12.7% of women (P < .05). Our study did not investigate the dose or type of drug prescribed, but given the prescription pattern of lipid-lowering drugs in the health system, it can be assumed that most were statins.
The degree of attainment of target LDL-C levels in each CVR category is shown in Table 2. The data reveal that only 6.5% of the population at very high or high risk achieved target LDL-C levels, most of them men (8.9% vs 3.7%; P < .01). However, in the low and moderate CVR categories, a higher percentage of women achieved target LDL-C levels (Table 2). In the multivariable analysis, only female sex was associated with worse lipid control in the very high and high risk groups (odds ratio [OR] = 2.25; 95% confidence interval [95%CI], 1.01–5.00; P < .05), whereas a history of cardiovascular disease was associated with better lipid control (OR = 0.23; 95%CI, 0.11–0.52; P < .001).

Finally, for patients with diseases requiring secondary prevention goals, the highest percentage of target LDL-C was achieved among those with cardiovascular disease (ischemic heart disease and stroke; 17.7% of patients had LDL-C < 70 mg/dL; 23.4% of men vs 9.4% of women; P = .140). The second highest percentage was achieved among those with peripheral artery disease (LDL-C < 70 mg/dL, 9.2%; 15.2% in men, 1.9% in women; P < .05).

In summary, our study reveals that 48.9% of patients with very high or high CVR are prescribed lipid-lowering drugs, but that the prescription rate among women in these risk categories is lower than for men (33.7% vs 51.9%; P < .05); moreover, among patients in these risk categories, a lower proportion of women than men achieve target LDL-C levels (3.7% vs 8.9%; P < .05). In contrast, a higher proportion of women than men at moderate or low CVR take lipid-lowering drugs (34.7% vs 22.4%; P < .05) and a higher proportion of them have target LDL-C levels (79.4% vs 54.5%; P < .05) (Table 2).

These results are consistent with those of other studies indicating that different therapeutic approaches to CVR are used for women and men: there is a tendency to undertreat women in secondary prevention and those at very high or high CVR, and a
Combined Percutaneous Mitral Valve Implantation and Paravalvular Leak Closure in a High-risk Patient With Severe Mitral Regurgitation

Reparación percutánea combinada de válvula mitral: cierre de fuga paravalvular e implante de prótesis transcatéter en paciente de alto riesgo con insuficiencia mitral grave

To the Editor,

The advantages of surgical mitral valve (MV) repair vs MV replacement have been extensively documented and it has become the preferred treatment option for patients with mitral regurgitation. However, recent studies have called into question the durability of MV repair, with a reoperation rate of up to 10% to 15% at 10 years of follow-up.\(^1\) In cases of mitral regurgitation recurrence, reoperation often carries a high risk and a significant number of patients do not undergo surgery for this reason.

Isolated case reports have suggested the feasibility of transcatheter MV implantation in the presence of a ring annuloplasty.\(^2\) In most of these cases, the transapical approach was used and a Melody\(^3\) or Edwards SAPIEN percutaneous valve was implanted into the mitral ring.\(^3\)\(^-\)\(^6\)

We report the case of a young man with MV repair failure, in which a percutaneous complete repair of the failed surgery was performed, with transfemoral closure of mitral paravalvular leak and implantation of an Edwards SAPIEN XT valve in the mitral ring in the same procedure.

A 62-year-old man was admitted due to congestive heart failure. Ten years before, the patient underwent coronary artery bypass (left internal mammary to left anterior descending artery and saphenous vein graft to circumflex) with MV repair and implantation of a 30-mm CE Physio semirigid ring (Edwards Lifesciences Inc; Irvine, California, United States). On admission, a transesophageal echocardiogram showed severe mitral regurgitation due to an anteroseptal para-ring leak, with a central intravalvular jet related to leaflet degeneration and moderate left ventricular dysfunction (ejection fraction 40%) with severe pulmonary hypertension. A coronary angiogram was performed ruling out significant coronary disease, with patent coronary grafts. The patient was rejected for a new surgical intervention (logistic EuroSCORE 21.49%, Society of Thoracic Surgeons score 10.23%) and transfemoral valve-in-ring implantation with para-ring leak closure was planned.

After transeptal puncture, an arteriovenous loop was established with a hydrophilic straight tip wire that had crossed the leak retrograde from the left ventricle, snared in the left atrium and exteriorized through the femoral vein. Subsequently, a left Amplatzer catheter was advanced from the venous side into the left atrium, crossing the MV anterograde with a hydrophilic wire, which was captured in the descending aorta and externalized through the femoral artery, creating the second venoarterial loop. After balloon dilation of the septum with a 16-mm balloon, a 29 Edwards SAPIEN XT prosthesis mounted reversely on an 18-F Novaflex delivery catheter (Edwards Lifesciences) was implanted inside the mitral ring under rapid pacing, with slow and controlled balloon inflation (Figure 1). After the valve implant a 7-F sheath was advanced through the first arteriovenous loop and after analysis of the transesophageal echocardiography images, a 14/5 AMPLATZER\(^\text{TM}\) vascular plug III was

\(^1\)Unidad de Investigación, Área de Salud Don Benito-Villanueva de la Serena, Badajoz, Spain

\(^2\)Centro de Salud Universitario La Paz, Badajoz, Spain

\(^\ast\)Corresponding author: E-mail address: fbuitragor@gmail.com (F. Buitrago).

Available online 24 October 2015

REFERENCES

