The conclusion drawn from this study, based on BMI analysis, is that obesity and overweight show no prognostic differences compared with normal weight for cardiovascular mortality, cardiovascular hospitalization, and appropriate and inappropriate therapies in this population of patients with HF and an ICD implant for primary prevention of SD.

However, the interpretation of these study results should take into account the limitations of the study. First, the conclusions are drawn from BMI analysis, which does not differentiate fat from lean body mass. Second, we did not analyze distribution of body weight (peripheral vs abdominal) or other measurements of adiposity such as body fat percentage. In addition, no information was available on the proinflammatory and nutritional status of the study population. Furthermore, the available information on BMI was taken from the time of implantation only; therefore, possible changes in this parameter at follow-up were not considered. Lastly, the retrospective design of the study increased the risk of bias.

REFERENCES

2. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohl M, Dickstein K, et al.; ESC Committee for Practice Guidelines. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart J. 2012;14:803–69.

http://dx.doi.org/10.1016/j.rec.2016.04.055
electrophysiologic study that was performed free from antiarrhythmic drugs in a conscious state. The PVC exhibited a QRS complex with a maximum duration of 147 ms, right bundle branch block morphology, QRS morphology in V1 and inferior axis of +90° (Figure 1A), suggesting a possible LV summit/outflow origin.\(^1\) Mapping and ablation were carried out using a 3.5 mm tip irrigated catheter (ThermoCool SF; Biosense Webster) facilitated by an electroanatomic mapping system (CARTO 3). The ablation catheter was first placed in the septal region of the right ventricular outflow tract where poor activation and pace maps were observed. The same catheter was then inserted in the coronary sinus but could only be advanced to the lateral mitral annulus region and consequently it was replaced by a 5 F multipolar catheter, which was successfully advanced out to the GCV/AIV junction. Activation mapping at this site showed a local ventricular signal of 15 ms pre-QRS with a near perfect pace mapping (97% concordance). Adjacent structures, such as the aortic-mitral continuity and the left coronary cusp (LCC) and right coronary cusp, were subsequently assessed with the LCC showing the second best activation (0 ms pre-QRS) and pace map (91% concordance) (Figure 1B and Figure 1C). Next, a safe distance (> 10 mm) between the ablation catheter in the LCC and the left main coronary artery was confirmed by coronary angiography (Figure 2A). Ablation was then carried out in the LCC with power initially set to 30 W and maximum temperature to 45 °C, aiming for a minimum impedance drop of 10 Ω (Figure 2B). Power was eventually titrated up to 50 W, which promptly terminated the PVC. During follow-up, the patient showed no further PVC.

Given that the LV summit is situated proximal to several structures (LCC, right coronary cusp, the septal right ventricular outflow tract, aortic-mitral continuity, GCV/AIV junction), successful catheter ablation can be achieved from any of these structures (Figure 2C).\(^1\)\(^-\)\(^3\)\(^-\)\(^5\) Yamada et al.\(^1\) reported successful ablation of LV summit VA within the GCV/AIV in 14 of 25 patients with earlier local ventricular activation in the GCV/AIV than in any other endocardial site. However, and as in our patient, ablation through the coronary venous system may not be possible due to difficulty in advancing the ablation catheter to the site of interest, the proximity of coronary arteries or the inability to achieve adequate power. Jauregui Abularach...
et al.2 reported successful ablation from the LCC in 9 of 16 patients who had VA that were mapped marginally closer to GCV/AIV, describing an aVL/aVR Q-wave ratio < 1.45 to be predictive of successful ablation from the LCC (aVL/aVR Q-wave ratio was 1.33 in our patient). Finally, when ablation from the endocardium or the coronary venous system fails, a percutaneous epicardial approach may be considered. In a study of 23 such patients, epicardial ablation was attempted in 14 patients, being successful in only 5 of them, and in the remaining 9 patients, the VA origin was in the inaccessible area in close proximity to the major coronary vessels.3

In summary, we present a patient with PVC from the LV summit with best activation and pace maps at the GCV/AIV junction. However, due to anatomical restrictions, ablation was carried out successfully from the LCC.

CONFLICTS OF INTEREST

M.A. Arias is an Associate Editor of Revista Española de Cardiología.

Finn Akerström,* Marta Pachón, Alberto Puchol, Irene Narváez, Luis Rodríguez-Partial, and Miguel A. Arias

Unidad de Arritmidias y Electrofisiología Cardiaca, Servicio de Cardiologia, Hospital Virgen de la Salud, Toledo, Spain

* Corresponding author:

E-mail address: finnakerstrom@gmail.com (F. Akerström).

REFERENCES

* Corresponding author:

E-mail address: finnakerstrom@gmail.com (F. Akerström).

REFERENCES