Detection of High-sensitivity Troponin T in Patients With Cardiovascular Risk. Response

Detección de troponina T ultrasensible en pacientes con riesgo cardiovascular. Respuesta

To the Editor,

We have read with interest the Letter to the Editor by Velilla Moliner et al.¹ concerning our article and appreciate their qualifications.

In contrast to diagnostic methods quantifying high-sensitivity troponin I, the methods used for high-sensitivity troponin T (hs-TnT) allow its detection in about 35% of the healthy population.² Without delving into the definition of “healthy” and if the 99th percentile should vary according to the characteristics of the population being studied,³ this aspect has not undermined the usefulness of hs-TnT in both the diagnosis of acute coronary events and their exclusion (given its high negative predictive value⁴). In addition, as correctly highlighted by the authors, hs-TnT has shown prognostic value not only in heart disease populations, but also healthy populations.

The ideal biomarker would be useful for diagnosis and prognosis, as well as treatment-related aspects. Regarding the latter, hs-TnT is a marker of the effectiveness of the recommended treatment⁵ for heart failure.

The findings of the TUSARC (Troponina T Ultrásensible en pacientes de muy Alto Riesgo Cardiovascular [High-sensitivity troponin T inpatients at high cardiovascular risk]) registry and others obligate clinicians to investigate other causes of hs-TnT elevation beyond ischemia. Thus, the association of an hs-TnT elevation with heart failure and myocardial fibrosis is important⁶ because it guides the role of elevated hs-TnT as a marker of both reversible and irreversible structural damage.

FUNDING

Roche Diagnostics provided the kits for the troponin determination, as well as both the internal and external controls.

Diagnosis of Cardiac Amyloidosis: Is Imaging Enough?

Diagnóstico de amiloidosis cardiaca. ¿Basta con una imagen?

To the Editor,

We have read with interest the Image in cardiology report by García-González et al.,¹ which shows intense uptake of the amyloid tracer F-florbetapir on PET/CT (positron emission tomography/computed tomography) in a 75-year-old man with multiple myeloma and heart failure. In the accompanying text, the authors link the positivity of this test with the histological diagnosis of cardiac amyloidosis (CA) and indicate that this test can avoid the risk of cardiac biopsy-related complications.

Without completely dismissing the usefulness of this new imaging test, we believe it important to review some of the fundamental concepts in the clinical treatment of patients with CA:

1. A diagnosis of CA requires histological evidence of amyloid deposits, either in the heart itself or in biopsies from other affected organs.² If the biopsy is obtained from an organ other than the heart, the typical signs of CA need to be seen in cardiac imaging tests (echocardiography). False positives are possible in any imaging test, and CA diagnosis frequently has serious prognostic and therapeutic implications.

2. A generic diagnosis of CA is insufficient. The substance deposited needs to be identified because prognosis and treatment vary considerably according to the type of CA.³ This requires immunohistochemical characterization of the amyloid material found in the biopsy, as well as demonstration of circulating amyloid protein in serum (amyloid light-chain amyloidosis [AL]) or a causative genetic mutation (transthyretin familial amyloidosis).

Physicians can only recommend radical therapeutic options such as transplantation or chemotherapy after identification of the specific type of amyloidosis.⁴ The patient studied by García-González et al.¹ does indeed have a high probability of having myeloma-associated AL amyloidosis but, due to his age and sex, might actually have senile CA (due to deposition of wild-type transthyretin), which would involve a different prognosis and therapeutic approach.⁵ Only when senile CA is suspected (due to its more benign behavior and the absence of a specific treatment) is it suggested that ⁹⁹mTc-methenium scintigraphy could obviate the need for endomyocardial biopsy.⁶ Nonetheless, the appropriate course of action remains unclear.

In conclusion, we believe that the emergence of F-florbetapir PET/CT for the diagnosis of CA is excellent news, especially if it is shown to be more sensitive than the other imaging techniques currently used for this purpose (ultrasound and magnetic resonance),⁶ but biopsy of the affected organ is still required. In

REFERENCES


SEE RELATED CONTENT:
http://dx.doi.org/10.1016/j.rec.2017.01.030
http://dx.doi.org/10.1016/j.rec.2017.04.004
1885-5857 © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.