Rosuvastatin and Metformin Decrease Inflammation and Oxidative Stress in Patients With Hypertension and Dyslipidemia

Anel Gómez-García, a Gloria Martínez Torres, b Luz E. Ortega-Pierres, c Ernesto Rodríguez-Ayala, b and Cleto Álvarez-Aguilar d

Introduction and objectives. Both hypertension and dyslipidemia raise the risk of cardiovascular disease because they have proinflammatory effects and increase oxidative stress. The aim of this study was to evaluate the effects of rosuvastatin and metformin on inflammation and oxidative stress in patients with hypertension and dyslipidemia.

Methods. This open parallel-group clinical study involved 48 patients with hypertension and dyslipidemia. Of these, 16 were treated with rosuvastatin, 10 mg/day, while 16 received metformin, 1700 mg/day, and the 14 in the control group received starch placebo, 10 mg/day. The following variables were recorded during the study: age, weight, body mass index, blood pressure, glucose, total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), glutathione reductase (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD).

Results. Administration of 10 mg/day of rosuvastatin decreased total cholesterol by 41.7%, LDL cholesterol by 63.0%, and triglycerides by 10.7%, and increased HDL cholesterol by 6.3%. Pharmacological treatment with either rosuvastatin or metformin lead to reductions in IL-6, TNFα, GSH and GPx levels and an increase in the SOD level, and there were significant interactions between the two treatment groups for these variables.

Conclusions. Rosuvastatin improved the lipid profile.

Moreover, both rosuvastatin and metformin reduced inflammation and oxidative stress. These results demonstrate the presence of an additional cardioprotective effect, which may result from a direct mechanism of action or be a pleiotropic effect. Further long-term studies are required to determine whether rosuvastatin or metformin can be used to decrease the cardiovascular risk resulting from oxidative stress and inflammation.

Key words: Oxidative stress. Inflammation. Drugs. Pleiotropic effects. Cardiovascular risk.

Rosuvastatina y metformina reducen la inflamación y el estrés oxidativo en pacientes con hipertensión y dislipemia

Introducción y objetivos. La hipertensión arterial (HTA) y la dislipemia incrementan el riesgo de enfermedad cardiovascular a través de los efectos proinflamatorios y el estrés oxidativo. Nuestro objetivo fue estimar el efecto de la rosuvastatina y la metformina en la inflamación y el estrés oxidativo en pacientes con HTA y dislipemia.

Métodos. En un ensayo clínico abierto paralelo, se estudió a 48 pacientes con HTA y dislipemia. Se trató a 16 pacientes con rosuvastatina 10 mg/día, 16 con metformina 1700 mg/día y 16 con 10 mg de almidón como control. Las variables analizadas durante el estudio fueron edad, peso, índice de masa corporal (IMC), presión arterial, glucosa, colesterol total (CT), de las lipoproteínas de baja densidad (cLDL) y de las lipoproteínas de alta densidad (cHDL), triglicéridos (TG), interleucina 6 (IL-6), factor de necrosis tumoral alfa (TNFα), glutación reductasa (GSH), glutación peroxidasa (GPx) y superóxido dismutasa (SOD).

Resultados. Con 10 mg/día de rosuvastatina, disminuyeron el CT (41.7%), el cLDL (63%) y los TG (10.7%) y se incrementó el cHDL (6.3%). Después del tratamiento farmacológico con rosuvastatina o metformina, se encontró disminución e interacción entre grupos en la IL-6, el TNFα, la GSH y la GPx e incremento en la SOD.

Conclusiones. La rosuvastatina mejoró el perfil de lipi-
Los fármacos reducen la inflamación y el estrés oxidativo. Estos resultados demuestran un efecto adicional cardioprotector, como un mecanismo de acción directo o a través de sus efectos pleitópicos. Son necesarios estudios adicionales a largo plazo para determinar si la rosvastatina o la metformina serán fármacos útiles para disminuir el riesgo cardiovascular causado por el estrés oxidativo y la inflamación.

INTRODUCCIÓN

En México, la prevalencia de no-transmisibles crónico cardiovascular, como el alto sangre presión (HBP) y diabetes mellitus, ha aumentado exponencialmente en los últimos 2 décadas. De hecho, el HBP es más común que el contagioso enfermedad.

La prevalencia de HBP ha alcanzado 30,1%1 y es uno de los factores de riesgo mayor con el cerebrovascular y el corazón. Es el caso tomado por buenos y asociación con este problema.1,2

Algunos 36,5% de todos los pacientes con HBP también sufrirán dislipidemia.1 Este incremento aumenta el riesgo de enfermedad cardiovascular. Uno de los posibles mecanismos detrás de esto se encuentra en la inflamación crónica efectos de interleukin-6 (IL-6) y tumores dismutación (TNFα).

Un número de estudios han demostrado que ambos citocinas están involucradas en el desarrollo inflamatorio crónico vascular.3,4 La inflamación es un origen de estrés oxidativo, que también es involucrado en el desarrollo de la aterosclerosis y el HBP. Algunas estudios indican la importancia de un cambio en el balance de antioxidante y enzimas antioxidantes en el progreso de la aterosclerosis, HBP, y diabetes mellitus tipo 2.6-8

Los efectos adicionales de medicamentos que reducen la concentración de lipidos (estatinas)9-12 y sensibilizar a la insulina (metformina)12 son conocidos como pleitópicos efectos. Estos incluyen (entre otros) el mejoramiento de la función endotelial (a través de una inflamatoria y antioxidante acción), la estabilización de plaquetas ateroscleróticas, y una reducción en la trombogénico respuesta.13-15

Esta ha permitido algunos de los mecanismos de estrés oxidativo y, en particular, antioxidante y antioxidante enzimas, en el progreso de la aterosclerosis, HBP, y diabetes mellitus tipo 2.6-8

Los fármacos se han utilizado para el tratamiento de la dislipidemia y a través de sus acciones pleitópicas. Es necesario realizar más estudios a largo plazo para determinar si los fármacos serán útiles para disminuir el riesgo cardiovascular causado por el estrés oxidativo y la inflamación.

METODOS

Este estudio abierto, grupo paralelo se realizó entre julio y septiembre de 2006. Los grupos iniciales de estudio fueron seleccionados de los pacientes atendidos con el programa de medicina familiar N° 80 del Instituto Mexicano del Seguro Social (IMSS) de Morelia, Michoacán, México. De estos, 244 fueron excluidos porque ya tenían diabetes mellitus 2, y un total de 206 no cumplieron con los criterios de inclusión después de que se recibiera tratamiento farmacológico para la dislipidemia o se había suspendido el tratamiento con antihipertensivos.

Entre los 48 pacientes que fueron incluidos, ninguno había recibido tratamiento farmacológico para el HBP, su dieta, o su rutina física en los 3 meses previos a la inclusión. No se realizaron cambios durante el seguimiento. Los sujetos fueron randomizados a 3 grupos intervención farmacológica. Seis pacientes recibieron rosuvastina 10 mg/día (grupo GRos), 16 recibieron metformina 1700 mg/día, administrado como 2 tabletas de 850 mg (en el primer día 1 tablet/día) y si tolerado este doce fue aumentado a 1 tablet/día cada 12 h (grupo GRos); 16 recibieron metformina 1700 mg/día, administrado como 2 tabletas de 850 mg (en el primer día 1 tablet/día); y 16 recibieron placebo de cuidado (grupo GC). El tratamiento duró 12 semanas (Figura 1). El mínimo requerido de tamaño fue estimado utilizando la prueba clínica de la ecuación; el resultado se requirió para proporcionar un nivel de confianza del 95%, y un 80% poder para detectar un cambio en la concentración de IL-6 de 0,6 mg/mL (desviación estándar 0,5 mg/mL). La ecuación mostró que 13 pacientes por grupo fueron necesarias. Seis pacientes fueron incluidos en cada grupo para hacer compensar cualquier cambio durante el seguimiento.

Los pacientes que fueron incluidos en el grupo intervenido eran de 3.2 años, peso del cuerpo, altura, índice de masa corporal (Quetelet index), número de años con HBP, presión arterial sistólica (SBP), presión arterial diastólica (DBP), total colesterol (TC), LDL-C, HDL-C, triglicérides (TG), concentraciones de las proteínas enzimas de los marcadores inflamatorios IL-6 y
Gómez-García A et al. Rosuvastatin and Metformin Decrease Inflammation and Oxidative Stress

TNFα, and oxidative stress (activities of the enzymes glutathione reductase [GSH], glutathione peroxidase [GPx], and superoxide dismutase [SOD]). Patients attended a monthly appointment at the Epidemiological Research Unit, Clínica del Hospital General Regional N°. 1 IMSS to check for any signs of adverse effects of treatment, to check adherence to treatment (via counting of the pills provided), to provide new prescriptions for corresponding medication, and to check the patients had not changed their lifestyles or had been prescribed additional pharmacological treatment that might affect their lipid or inflammatory status or oxidative stress levels.

At the end of the intervention period all patient variables (see above) were rechecked in all 3 study groups. All patients received strict clinical monitoring, with particular attention paid to liver enzymes levels.

Blood Tests

Blood was collected between 7.00 and 8.00 am after a 12 h fast and with the patients having rested for 20 min. All samples were collected by trained personnel. The samples were then centrifuged at 4000 rpm for 15 min to extract the serum. Aliquots were prepared for the determination of glucose, TC, LDL-C, HDL-C, and TG by enzyme colorimetry using the Dimension® AR Clinical Chemistry System. The remaining aliquots were stored at −70°C until they were analyzed for IL-6, TNFα, GSH, GPx, and SOD by ELISA (Cayman Chemical®). The intra-analysis coefficient of variation for all tests was 3%-5%.

Statistical Analysis

The results are expressed as means (standard deviation). The Student t test for paired samples was used to examine the differences in serum lipids before and after the pharmacological interventions. Differences between means were analyzed by 2-way ANOVA followed by the Bonferroni test. The dependent variables were the concentrations of IL-6, TNFα, and oxidative stress enzymes; the different treatments and times (before and after treatment) were taken as independent variables.
A P value less than .05 was considered significant. All calculations were performed using SPSS v.12.0 software for Windows (Chicago, Illinois, USA).

RESULTS

No patients were lost to follow-up nor was there any need to suspend treatment in any patient during the 12 week experimental period. Treatment was well tolerated, no patient declared any adverse effect, and no significant modifications in liver enzyme values were seen. Tables 1 and 2 show the clinical, biochemical and inflammation, and oxidative stress marker results for the patients at the start of the study. The values of all variables across the groups were similar at this time.

A post-treatment reduction in body weight was seen in the GRos (80.57 [12.83] kg before treatment, 79.27 [12.52] kg after treatment; P=.013) and GMetf subjects (before treatment 80.97 [10.22] kg, after treatment 74.7 [10.44] kg; P=.011), and therefore in their BMI (GRos before treatment 33.05 [4.09] kg, after treatment 33.37 [3.62] kg [P=.002]; GMetf before treatment 34.39 [3.83] kg, after treatment 32.41 [4.79] kg [P=.015]). No significant changes in body weight nor BMI were seen in the GC subjects.

Figure 2 shows the percentage modification of the serum lipid profiles with respect to each treatment group. In the GRos group, treatment reduced the TC by 41.7%, LDL-C by 63%, and TG by 10.7%, and increased HDL-C by 6.3%. In contrast, in the GMetf group there was a general trend towards an increase in serum lipids, especially LDL-C which showed an 11.8% increase.

Figure 3 shows the effect of the different treatments in terms of serum IL-6 and TNFα concentration. In the GRos group, IL-6 was reduced by 22.24% and TNFα by 13.03%; in the GMetf group IL-6 was reduced by 26.73% and TNFα by 8.31% (P<.05 for all comparisons). Two-way ANOVA revealed an interaction between the groups with respect to IL-6 (F=3.19; P=.045) and TNFα (F=8.01; P=.004), and significant differences between the groups GRos and GMetf compared to GP after 3 months with respect to IL-6 (F=12.50; P<.0001) and TNFα (F=3.12; P=.048).

Finally, Figure 4 shows the change in oxidative stress markers for each group. The activities of GSH and GPx were both significantly reduced and SOD activity significantly increased by the GRos and GMetf treatments. Two-way ANOVA revealed an interaction between the groups with respect to GSH (F=4.46; P=.014), GPx (F=8.04; P=.0006), SOD (F=5.56; P=.008) and significant differences between the groups GRos and GMetf and GP after 3 months of treatment with respect to the same oxidative stress enzymes (GSH, F=17.74; P<.0001; GPx, F=11.38; P<.0001; SOD, F=9.11; P=.0004).

TABLE 1. Baseline Clinical and Biochemical Characteristics of the Patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>GRos (n=16)</th>
<th>GMetf (n=16)</th>
<th>GC (n=16)</th>
<th>P (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD), y</td>
<td>56 (8.8)</td>
<td>52.25 (10.87)</td>
<td>54 (8.01)</td>
<td>.538</td>
</tr>
<tr>
<td>Body weight, kg</td>
<td>80.57 (12.83)</td>
<td>80.97 (10.22)</td>
<td>77.63 (11.11)</td>
<td>.739</td>
</tr>
<tr>
<td>Height, m</td>
<td>1.54 (0.09)</td>
<td>1.53 (0.05)</td>
<td>1.59 (0.06)</td>
<td>.996</td>
</tr>
<tr>
<td>BMI</td>
<td>33.05 (4.09)</td>
<td>34.39 (3.83)</td>
<td>31.02 (3.56)</td>
<td>.118</td>
</tr>
<tr>
<td>YWHBP</td>
<td>8.68 (7.57)</td>
<td>10.54 (4.67)</td>
<td>5.38 (4.88)</td>
<td>.194</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>122.68 (21.7)</td>
<td>142.06 (29.84)</td>
<td>132.12 (31.32)</td>
<td>.490</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>86.93 (10.19)</td>
<td>88.06 (12.69)</td>
<td>80.92 (15.23)</td>
<td>.785</td>
</tr>
<tr>
<td>Glucose, mg/dL</td>
<td>119.68 (32)</td>
<td>132.71 (48.22)</td>
<td>149 (66.37)</td>
<td>.309</td>
</tr>
<tr>
<td>TC, mg/dL</td>
<td>228.18 (25.51)</td>
<td>225.91 (32.71)</td>
<td>241.58 (33.4)</td>
<td>.998</td>
</tr>
<tr>
<td>TG, mg/dL</td>
<td>45.12 (11.73)</td>
<td>42.91 (4.31)</td>
<td>37.56 (19.85)</td>
<td>.440</td>
</tr>
<tr>
<td>HDL-C, mg/dL</td>
<td>208.21 (74.16)</td>
<td>178.83 (38.54)</td>
<td>240.81 (81.79)</td>
<td>.104</td>
</tr>
</tbody>
</table>

YWHBP indicates years with high blood pressure; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TC, total cholesterol; DBP, diastolic blood pressure; SBP, systolic blood pressure; TG, triglycerides.

TABLE 2. Markers of Inflammation and Concentration of Oxidative Stress Enzymes at the Beginning of Treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>GRos (n=16)</th>
<th>GMetf (n=16)</th>
<th>GC (n=16)</th>
<th>P (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6, pg/mL</td>
<td>12.45 (1.66)</td>
<td>13.39 (3.32)</td>
<td>14.52 (3.63)</td>
<td>.191</td>
</tr>
<tr>
<td>TNFα, pg/mL</td>
<td>8.74 (1.27)</td>
<td>8.66 (1.57)</td>
<td>8.36 (1.64)</td>
<td>.856</td>
</tr>
<tr>
<td>GSH, nmol/min/mL</td>
<td>10.42 (4.58)</td>
<td>10.06 (8.38)</td>
<td>13.42 (4.13)</td>
<td>.320</td>
</tr>
<tr>
<td>GPx, nmol/min/mL</td>
<td>18.31 (6.8)</td>
<td>14.2 (6.18)</td>
<td>15.77 (2.97)</td>
<td>.148</td>
</tr>
<tr>
<td>SOD, U/mL</td>
<td>0.3539 (0.05)</td>
<td>0.3526 (0.07)</td>
<td>0.3673 (0.05)</td>
<td>.769</td>
</tr>
</tbody>
</table>

In the GRos group, treatment reduced the TC by 41.7%, LDL-C by 63%, and TG by 10.7%, and increased HDL-C by 6.3%. In contrast, in the GMetf group there was a general trend towards an increase in serum lipids, especially LDL-C which showed an 11.8% increase.

Figure 3 shows the effect of the different treatments in terms of serum IL-6 and TNFα concentration. In the GRos group, IL-6 was reduced by 22.24% and TNFα by 13.03%; in the GMetf group IL-6 was reduced by 26.73% and TNFα by 8.31% (P<.05 for all comparisons). Two-way ANOVA revealed an interaction between the groups with respect to IL-6 (F=3.19; P=.045) and TNFα (F=8.01; P=.004), and significant differences between the groups GRos and GMetf compared to GP after 3 months with respect to IL-6 (F=12.50; P<.0001) and TNFα (F=3.12; P=.048).

Finally, Figure 4 shows the change in oxidative stress markers for each group. The activities of GSH and GPx were both significantly reduced and SOD activity significantly increased by the GRos and GMetf treatments. Two-way ANOVA revealed an interaction between the groups with respect to GSH (F=4.46; P=.014), GPx (F=8.04; P=.0006), SOD (F=5.56; P=.008) and significant differences between the groups GRos and GMetf and GP after 3 months of treatment with respect to the same oxidative stress enzymes (GSH, F=17.74; P<.0001; GPx, F=11.38; P<.0001; SOD, F=9.11; P=.0004).
DISCUSSION

Treatment with oral rosuvastatin (10 mg/day) for 3 months reduced the patients’ TC, TG, and LDL-C levels, moderately increased the HDL-C level, and reduced the levels of inflammation and oxidative stress markers. Treatment with oral metformin (1700 mg/day) had a similar effect on the latter variables, but induced non-significant increases in lipid profile variables, especially LDL-C.

Statins (inhibitors of HMG-CoA reductase) can induce large reductions in the concentration of plasma lipids; they are therefore the treatment of choice for patients with hypercholesterolemia or high LDL-C concentrations. In the present study, significant reductions were seen in both TC and LDL-C concentrations following treatment with rosuvastatin (10 mg/day) However, it should be noted that this response was seen with a dose of just (10 mg/day); in other studies18,19 such a response has only been seen with larger doses, which can be associated with more intense adverse effects. In the present work no patient reported any adverse event attributable to rosuvastatin, nor were any changes seen in the liver enzymes that might indicate a modification of hepatic function. The mechanism of action of this drug and of the statins in general involves the reduction of TC and LDL-C via the inhibition of hepatic cholesterol synthesis, and by increasing the expression of liver LDL-C receptors that favor the capture of this compound.

Figure 2. Percentage modification of lipids after 12 weeks of treatment. A: rosuvastatin group. B: metformin group. C: control group. HDL-C indicates high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides.

Figure 3. Modification of inflammation following 12 weeks of treatment. Two-way ANOVA (differences between GRos and GMetf compared to GC). GC indicates control group; GMetf, metformin group; GRos, rosuvastatin group.
An interesting finding was the moderate loss of body weight (2.8 kg) associated with rosuvastatin treatment. This is thought to be the first report associating statin treatment with such weight loss. It may be that by reducing the serum lipid concentration sensitivity to insulin is improved. In patients with HBP and dyslipidemia it is common that a reduction in insulin resistance be accompanied by weight loss.²⁰ This hypothesis may receive some support from the reductions observed in serum IL-6 and TNFα, cytokines related to inflammation, and insulin resistance.²¹

Although it has been reported that metformin can reduce plasma lipid values,²²-²⁴ in the present study no significant differences in serum lipid values were seen in the group treated with this drug. In agreement, Kiyias et al.²⁵ reported metformin to have no effect on plasma lipid levels. The main metabolic effect of metformin is the improvement in sensitivity to insulin of the liver and peripheral tissues. The beneficial effect of metformin in terms of the reduction of body weight and of pro-insulin-like molecules has been reported.²⁶,²⁷ In the present study, treatment with metformin 1700 mg/day led to a significant reduction in BMI; this agrees with that reported in other clinical studies²⁸,²⁹ and confirms that previously reported by our group³⁰ that the most important effects of metformin are weight loss, the modification of body composition, an increase in glucose uptake in hypoglycemic patients, and hyperinsulinemia and the improvement of beta cell function. Several authors have shown metformin eliminates plasminogen activator inhibitor 1 and macrophage migratory inhibition factor from the plasma of obese patients; this drug may therefore have anti-inflammatory activity and reduce cardiovascular morbidity/mortality.³¹,³²

High blood pressure is reported to promote the endothelial expression of cytokines such as IL-6 and TNFα, which mediate the amplification of proinflammatory signals³³ and participate in the development of atherosclerosis.³⁴,³⁵ There is therefore growing interest in the pleiotropic effects of drugs such as the statins and metformin,³⁶-³⁸ which might help modulate oxidative stress and the inflammatory response (known cardiovascular risk factors). In the present work, the administration of rosuvastatin or metformin significantly reduced serum IL-6 and TNFα concentrations. The reduction of these inflammation markers is probably due to a reduction in the activity of nuclear factor kappa B (NF-κB) and an increase in the activity of the protein Akt (as seen in monocyte cultures).³⁹,⁴¹ Evidence has accumulated in recent years that NF-κB is a common denominator in the coordinated expression of genes induced by inflammatory processes associated with endothelial activation.⁴² Unlike other transcription factors, the activation of NF-κB requires no induction of gene expression.

It is known that in patients with HBP, hyperglycemia, and dyslipidemia increase oxidative stress. In the present study, treatment with rosuvastatin or metformin led to a reduction of this stress. This might be explained by a direct effect of these drugs on the suppression of NF-κB, thus reducing inflammation and the production of reactive oxygen species.⁴¹,⁴³,⁴⁴ or by their regulating the activity of SOD, which would help protect against oxidative stress.⁴⁵

![Figure 4](http://www.revespcardiol.org/)
Limitations of the Study

This study has several limitations. For example, body composition was not measured by bioimpedance; therefore while the results indicate that rosuvastatin and metformin have a beneficial effect on body weight, it is not certain that this is due to the loss of fat. In addition, serum insulin concentrations were not recorded – this hormone has a known anti-inflammatory effect. Clinical studies are needed to investigate the effects of insulin resistance in the peripheral tissues plus the interaction of different anti-hypertension drugs on oxidative stress.

CONCLUSIONS

The present results show that patients with HBP and dyslipidemia who are treated with rosuvastatin 10 mg/day experience a significant reduction in their serum TC, LDL-C, and TG concentrations, plus a moderate increase in their HDL-C concentration. Rosuvastatin and metformin significantly reduce inflammation and oxidative stress, and may therefore offer a protective effect against cardiovascular disease. Some of their pleiotropic effects are thus made manifest in the present results. Long-term clinical trials are needed to determine whether rosuvastatin and metformin can continue to reduce the cardiovascular risk caused by oxidative stress and inflammation in this type of patient.

REFERENCES

38. Li JJ, Chen XJ. Simvastatin inhibits interleukin-6 release in human monocytes stimulated by C-reactive protein and lipopolysaccharide. Coron Artery Dis. 2003;14:329-34.

