latest-generation micro-TEE probes might represent a very valid alternative not only for LAAO but also for other percutaneous structural heart interventions and could be an option in patients without intubation or general anesthesia, in particular in elderly patients or those with severe comorbidities. Additional experience will be necessary to confirm that high quality imaging is also observed in a larger sample of patients.

Gustavo Jiménez Britex, Laura Sanchis, Ander Regueiro, Manel Sabate, Marta Sitges, and Xavier Freixa
Instituto Cardiovascular, Hospital Clínico de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

* Corresponding author: E-mail address: freixa@clinic.ub.es (G. Jiménez Britex).
Available online 23 June 2018

Three-dimensional Image Fusion of Precatheter CT and MRI Facilitates Stent Implantation in Congenital Heart Defects

La fusión de imágenes tridimensionales por TAC y RM antes del cateterismo facilita el implante de stent en defectos cardiacos congénitos

To the Editor,

Advances in 3-dimensional (3D) image fusion software have enabled easy application of preintervention imaging, including computed tomography (CT) and magnetic resonance imaging (MRI), scans, to create a reliable roadmap for swift manipulation through complex cardiac anatomy.1-5 In an article published in Revista Española de Cardiología, Sándoval et al.3 presented an elegant case report of image fusion of a CT-derived 3D roadmap for aortic stent implantation.

We performed a retrospective review of stent implantation guided by novel image fusion software (VesselNavigator, Philips Healthcare) during the first 9 months since its introduction (Figure). Patient characteristics and catheterization data were reviewed with a focus on the fusion of preintervention imaging and intervention guidance, including structures used for registration, accuracy of 3D reconstruction overlay, and the need for intra-procedural roadmap readjustment.

VesselNavigator was used in all consecutive patients with available precatheterization CT or MRI scans. The 4-step workflow with VesselNavigator, including segmentation, planning, registration and live guidance, has been described elsewhere.4,5 For the registration, stored fluoroscopy images in 2 projections were fused with the 3D roadmap (2D-3D registration) using a combination of internal markers such as bony structures, the cardiac silhouette, areas of calcification, previously implanted devices, and vessel borders visualized with injection of a small amount of contrast medium.

Eighteen patients underwent transcatheter stent implantation for the creation of a “landing zone” prior to percutaneous pulmonary valve implantation (n = 7), pulmonary artery stenosis (n = 5), aortic coarctation (n = 3; video of the supplementary material), aortopulmonary collateral (n = 2) and arterial duct (n = 1) (Table). A 3D roadmap was created from existing CT (n = 17) or MRI (n = 1) datasets. For registration, the spine and vertebrae (n = 17; 94%), calcifications (n = 7, 39%), test angiongram (n = 5, 28%) or a previously placed device (n = 4, 22%) served as reference points for orientation of the 3D roadmap against live fluoroscopy. Accurate overlay was achieved in all but 2 patients (11%) with an additional 2 patients (11%) requiring intra-procedural realignment due to the introduction of a stiff wire and balloon/stent assembly. All stents were deployed at desired locations with no complications. In 13 patients (72%), the stent was positioned and deployed without prior contrast injection.

To date and to our knowledge, this is the first series focusing on application of preregistered 3D datasets exclusively for guidance of stent implantation in congenital heart defects. Our initial experience shows that, with modern fusion software, noninvasive 3D images may be easily and effectively reused for positioning and implantation of stents to various locations.2,4,5 A simple registration protocol requires only stored fluoroscopy in 2 projections, akin to the typical setup of isocenter at the beginning of each heart catheterization, and uses a combination of anatomical or iatrogenic landmarks or the injection of a small contrast volume. This 2D-3D registration enabled a shortening of the duration of interventional procedures and a reduction in contrast and radiation exposure.6 In several more recent patients, we felt confident enough to perform stent implantation without prior contrast injection.

To test the reproducibility of these promising individual results, we have initiated a prospective, international registry with contributions from Berlin (Germany), Sejong (South Korea), Mexico City (Mexico), Denver (United States), and Lodz (Poland).

REFERENCES


https://doi.org/10.1016/j.rec.2018.05.016
1885-5857/ © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
In conclusion, 3D image fusion facilitates precise stent implantation into various anatomical locations. In selected patients, contrast injection may be spared prior to stent implantation.

SUPPLEMENTARY MATERIAL

Supplementary material associated with this article can be found in the online version available at https://doi.org/10.1016/j.rec.2018.05.013.
Sebastian Goreczny, Tomasz Moszura, Maciej Lukaszewski, Michal Podgorski, Jadwiga Anna Moll, and Pawel Dryzek

*Department of Cardiology, Polish Mother’s Memorial Hospital, Research Institute, Lodz, Poland
bDepartment of Radiology, Polish Mother’s Memorial Hospital, Research Institute, Lodz, Poland

*Corresponding author: E-mail address: sebastiangoreczny@yahoo.pl (S. Goreczny).
Available online 15 June 2018

REFERENCES


https://doi.org/10.1016/j.rec.2018.05.013
1885-5857
© 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.