Publique en esta revista
Información de la revista
Vol. 7. Núm. G.
Estimulación cardiaca con marcapasos: fisiopatología, uso clínico, seguimiento y complicaciones
Páginas 4G-19G (octubre 2007)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 7. Núm. G.
Estimulación cardiaca con marcapasos: fisiopatología, uso clínico, seguimiento y complicaciones
Páginas 4G-19G (octubre 2007)
Estimulación cardiaca con marcapasos
Acceso a texto completo
Conceptos técnicos fundamentales de la estimulación cardiaca
Cardiac Pacing: Basic Technical Considerations
Visitas
3464
Jesús Rodríguez Garcíaa,
Autor para correspondencia
jrodriguez@vitanet.nu

Correspondencia: Dr. J. Rodríguez García. Unidad Coronaria. Hospital 12 de Octubre. Ctra. de Andalucía, s/n. 28041 Madrid. España.
, Diego Lorente Carreñob, Ricardo Ruiz Granellc, Enrique Bosch Novelad
a Unidad Coronaria. Hospital 12 de Octubre. Madrid. España
b Servicio de Cardiología. Hospital San Pedro. Logroño. La Rioja. España
c Servicio de Cardiología. Hospital Clínico Universitario de Valencia. Valencia. España
d Vitatron Medical España, S.A. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen
Bibliografía
Descargar PDF
Estadísticas

Los marcapasos, para generar los impulsos eléctricos y alimentar sus circuitos, precisan de una fuente de energía, que en la actualidad es una pila de litio-yodo, de capacidad limitada aunque su carga sea tres veces mayor por unidad de volumen que la disponible en las baterías empleadas hace 30 años.

A continuación se exponen aspectos técnicos básicos cuyo conocimiento es necesario para obtener un bajo consumo de energía y de este modo prolongar la vida útil de los generadores.

La programación de la energía del impulso permite reducir el consumo, por lo que es fundamental obtener un óptimo umbral de estimulación, que en gran parte depende de la interfase electrodo-endocardio.

También se revisan los automatismos de respuesta en frecuencia, detección y reducción de la estimulación ventricular innecesaria, así como la digitalización de las señales intracardiacas.

Palabras clave:
Energía
Pila de litio-yodo
Umbral de estimulación
Detección
Digitalización de señales intracardiacas

Cardiac pacemakers need an energy supply to generate pulses and to power internal circuitry. At present, that energy is provided by a lithium iodine cell, which has a limited capacity although it holds three times the charge per unit volume of batteries used 30 years ago.

This article describes the basic techniques used for ensuring that energy consumption is low and, consequently, that the pacemaker's useful life is as long as possible.

Careful programming reduces the energy used in each impulse and lowers consumption. Therefore, it is essential to determine the optimum pacing threshold, which largely depends on the electrode-endocardium interface.

This article also contains a review of automatic pacemaker functions, such as rate-responsiveness and the detection and reduction of unnecessary ventricular pacing, and an update on digital processing of intracardiac signals.

Key words:
Energy
Lithium iodine cell
Pacing threshold
Detection
Digital processing of intracardiac signals
El Texto completo está disponible en PDF
Bibliografía
[1.]
W. Greatbatch, C.F. Holmes.
The lithium/iodine battery: A historical perspective.
Pacing Clin Electrophysiol, 5 (1992), pp. 2034-2036
[2.]
A. Schuchert, T. Meinertz.
A randomized study on the effects of pacemaker programming to a lower output on projected pulse generator longevity.
Pacing Clin Electrophysiol, 24 (2001), pp. 1234-1239
[3.]
G.S. Ohm.
Die galvanische Kette, mathematisch bearbeitet.
TH Riemann, (1827),
[4.]
A. Schuchert, K.H. Kuck.
Influence of internal current and pacing current on pacemaker longevity.
Pacing Clin Electrophysiol, 17 (2001), pp. 13-16
[5.]
S. Barold, K. Stokes, C.L. Byrd, R. McVenes.
Energy parameters in cardiac pacing should be abandoned.
Pacing Clin Electrophysiol, 20 (1997), pp. 112-121
[6.]
W. Fischer, Ph. Ritter.
Cardiac pacing in clinical practice.
Springer, (1998),
[7.]
E. Bosch Novela.
Fundamentos físicos de la estimulación cardiaca. El circuito de estimulación.
Cuadernos Técnicos, 8 (2003), pp. 5-8
[8.]
P.F. Cranefield, B.F. Hoffman, A.A. Siebens.
Anodal excitation of cardiac muscle.
Am J Physiol, 190 (1957), pp. 383-390
[9.]
J.J. Langberg, J. Sousa, R. El-Atassi, J. Burroughs, A. Leon, A. Arbor.
The mechanism of pacing capture hysteresis in humans [resumen].
Pace, 15 (1992), pp. 557
[10.]
C.E. Levick, H.F. Mizgala, C.R. Kerr.
Failute to pace following high dose antiarrhythmic therapy reversal with isoproterenol.
Pace, 7 (1984), pp. 252-256
[11.]
D. Gelvan, E. Crystal, B. Dokumaci, I.E. Ovsyshcher.
Effect of modern pacing algorithms on generator longevity: a predictive analysis.
Pacing Clin Electrophysiol, 26 (2003), pp. 1796-1802
[12.]
T. Berger, F.X. Roithinger, H. Antretter, H. Hangler, O. Pachinger, F. Hintringer.
The influence of high versus normal impedance ventricular leads on pacemaker generator longevity.
Pacing Clin Electrophysiol, 26 (2003), pp. 2116-2120
[13.]
P.V. Moracchini, D. Cornacchia, M. Bernasconi, M.C. Tesorieri, M. Fabbri, M. Marzegalli, et al.
High impedance low energy pacing leads: long-term results with a very small surface area steroid-eluting lead compared to three conventional electrodes.
Pacing Clin Electrophysiol, 22 (1999), pp. 326-334
[14.]
G. Milasinovic, J. Sperzel, T.W. Smith, H. Mead, J. Brandt, W.K. Haisty, et al.
Reduction of RV pacing by continuous optimization of the AV interval.
Pacing Clin Electrophysiol, 29 (2006), pp. 406-412
[15.]
A.M. Gillis, H. Purerfellner, C.W. Israel, H. Sunthorn, S. Kacet, M. Anelli- Monti, et al.
Reducing unnecessary right ventricular pacing with the managed ventricular pacing mode in patients with sinus node disease and AV block.
Pacing Clin Electrophysiol, 29 (2006), pp. 697-705
[16.]
G. Boriani, L. Rusconi, M. Biffi, L. Pavia, M. Sassara, D. Malfitano, et al.
Role of ventricular autocapture function in increasing longevity of DDDR pacemakers: a prospective study.
Europace, 8 (2006), pp. 216-220
[17.]
A.H. Madrid, J. Olague, A. Cercas, J.L. Del Ojo, F. Munoz, C. Moro, et al.
A prospective multicenter study on the safety of a pacemaker with automatic energy control: influence of the electrical factor on chronic stimulation threshold. PEACE Investigators.
Pace, 23 (2000), pp. 1359-1364
[18.]
A. Schuchert, T. Meinertz, Low Output Programming (LOP) Investigators.
A randomized study on the effects of pacemaker programming to a lower output on projected pulse generator longevity.
Pacing Clin Electrophysiol, 24 (2001), pp. 1234-1239
[19.]
R. García Civera, R. Ruiz Granell, S. Morell Cabedo, R. Sanjuán Máñez, J. Martínez León, S. Botella Solana, et al.
Electrofisiología cardiaca clínica y ablación.
McGraw-Hill Interamericana, (1999),
[20.]
P. Bagwell, F. Pannizzo, S. Furman.
Unipolar and bipolar right atrial appendage electrodes: comparison of sensing characteristics.
Med Instrum, 19 (1985), pp. 132-135
[21.]
B. Nowak.
Pacemaker stored electrograms: teaching us what is really going on in our patients.
Pacing Clin Electrophysiol, 25 (2002), pp. 838-849
[22.]
C.W. Israel, D. Gascon, B. Nowak, G. Campanale, P. Pascotto, W. Hartung, et al.
Diagnostic value of stored electrograms in singlelead VDD systems.
Pacing Clin Electrophysiol, 23 (2000), pp. 1801-1803
[23.]
W.M. Pollak, J.D. Simmons, A. Interian Jr., S.A. Atapattu, A. Castellanos, R.J. Myerburg, et al.
Clinical utility of intraatrial pacemaker stored electrograms to diagnose atrial fibrillation and flutter.
Pacing Clin Electrophysiol, 24 (2001), pp. 424-429
[24.]
P. Defaye, J.F. Leclercq, D. Guilleman, P. Scanu, J.R. Hazard, M. Fatemi, et al.
Contributions of high resolution electrograms memorized by DDDR pacemakers in the interpretation of arrhythmic events.
Pacing Clin Electrophysiol, 26 (2003), pp. 214-220
[25.]
H. Huikuri.
Effect of stored electrograms on management in the paced patient.
Am J Cardiol, 86 (2000), pp. K101-K103
[26.]
B. Nowak, J. McMeekin, M. Knops, B. Wille, E. Schroder, C. Moro, et al.
Validation of dual-chamber pacemaker diagnostic data using dual-channel stored electrograms.
Pacing Clin Electrophysiol, 28 (2005), pp. 620-629
[27.]
L. Padeletti, A. Michelucci, G. Frohlig, G. Corbucci, G. Van Oort, S.S. Barold.
Digital technology in cardiac pacing: methods for morphology analysis of sensed endocavitary signals.
J Interv Card Electrophysiol, 14 (2005), pp. 9-16
[28.]
E.G. Duffin.
The marker channel: a telemetric diagnostic aid.
Pacing Clin Electrophysiol, 7 (1984), pp. 1165-1169
[29.]
B. Nowak, J. Sperzel, F. Rauscha, L. Mont, J. Alzueta, P.J. Senden, et al.
Diagnostic value of onset-recordings and marker annotations in dual chamber pacemaker stored electrograms.
Europace, 5 (2003), pp. 103-109
[30.]
W.M. Pollak, J.D. Simmons, A. Interian Jr, A. Castellanos, R.J. Myerburg, R.D. Mitrani.
Pacemaker diagnostics: a critical appraisal of current technology.
Pacing Clin Electrophysiol, 26 (2003), pp. 76-98
[31.]
D.L. Hayes, D.P. Zipes.
Marcapasos y cardioversores-desfibriladores cardiacos.
Tratado de cardiología, pp. 767-796
[32.]
I. Karlof.
Haemodinamic effect of a atrial triggered versus fixed rate pacing at rest and during exercise in complete heart block.
Acta Med Scand, 197 (1975), pp. 195-206
[33.]
M. Heinz, E. Zitzmann, E. Alt, et al.
The effect of rate-adaptive pacing on exercise capacity, plasma lactate and catecholamines in pacemaker patients.
Eur J C P E, 6 (1996), pp. 28-32
[34.]
R. Nordlander, A. Hedman, S.K. Pehrsson.
Rate responsive pacing and exercise capacity — a comment.
Pace, 12 (1989), pp. 749-751
[35.]
F. Beyersdorf, J. Kreuzer, J. Happ, M. Zegelman, P. Satter.
Increase cardiac output with rate-responsive pacemaker.
Ann Thorac Surg, 42 (1986), pp. 201-205
[36.]
L. Cammilli, L. Alcidi, G. Papeschi, V. Wiechmann, L. Padeletti, G. Grassi.
Preliminary experience with the pH-triggered pacemaker.
Pace, 1 (1978), pp. 448-457
[37.]
D.G. Benditt, M. Mianulli, J. Fetter, D.W. Benson Jr, A. Dunningan, E. Molina, et al.
Single-chamber cardiac pacing with activity initiated chronotropic response. Evaluation by cardiopulmonary exercise testing.
Circulation, 75 (1987), pp. 184-189
[38.]
K. Den Dulk, L. Bouwels, F. Lindemans, I. Rankin, P. Brugada, H.J. Wellens.
The Activitrax rate-responsive pacemaker system.
Am J Cardiol, 61 (1988), pp. 107-112
[39.]
D.P. Lau, A. Antoniou, D.E. Ward, A.J. Camm.
Initial clinical experience with a minute ventilation sensing rate modulated pacemaker. Improvements in exercise capacity and symptomatology.
Pace, 11 (1988), pp. 1815-1822
[40.]
O. Sanz Jiménez.
Marcapasos con frecuencia adaptativa.
Práctica clínica en electrofisiología, marcapasos definitivo y desfibrilador automático, pp. 121-149
[41.]
D.P. Lau, A. Antoniou, D.E. Ward, A.J. Camm.
Initial clinical experience with a minute ventilation sensing rate modulated pacemaker. Improvements in exercise capacity and symptomatology.
Pace, 11 (1988), pp. 1815-1822
[42.]
H. Mond, N. Strathinore, P. Kertes, D. Hunt, G. Baker.
Rate responsive pacing using a minute ventilation sensor.
Pace, 11 (1988), pp. 1866-1874
[43.]
A.F. Rickards, R.M. Donaldson, H.J. Thalen.
The use of QT interval to determine pacing rate. Early clinical experience.
Pace, 6 (1983), pp. 346-354
[44.]
K. Malinowki.
Interindividual comparison of different sensors for rate-adaptive pacing.
Pace, 21 (1998), pp. 2209-2213
[45.]
F. Provenier, R. Van Aceker, J. Backers, E. Van Wassenhove, V. De Meyer, L. Jordaens.
Clinical observations with a dual-sensor rate-adaptive single chamber pacemaker.
Pace, 15 (1992), pp. 1821-1825
[46.]
L. Padeletti, P. Pieragnoli, L. Di Biese, A. Colella, M. Landolina, E. Moro, et al.
Is a dual-sensor pacemaker appropiate in patients with sino-atrial disease? Results from the DUSISLOG Study.
[47.]
H.H. Shukla, G.C. Flaker, A.S. Hellkamp, E.A. James, K.L. Lee, L. Goldman, et al.
Clinical and quality of life comparison of accelerometer, piezoelectric crystal, and blended sensors in DDDR-Pace patients with sinus-node dysfunction in the Mode Selection Trial (MOST).
[48.]
A. Schuchert, S. Lepage, J.J. Ostrander, R.J. Bos, M. Gwechenberger, A. Nicholls, et al.
Automatic analysis of pacemaker diagnostic data in the identification of atrial tachyarrhythmias in patients with no prior history of them.
Europace, 7 (2005), pp. 242-247
[49.]
C.J. Love.
The digital pacemaker.
Pacing Clin Electrophysiol, 27 (2004), pp. 707-708
[50.]
L. Padeletti, A. Michelucci, G. Frohlig, G. Corbucci, G. Van Oort, S.S. Barold.
Digital technology in cardiac pacing: methods for morphology analysis of sensed endocavitary signals.
J Interv Card Electrophysiol, 14 (2005), pp. 9-16
[51.]
N.M. Van Hemel, P. Wohlgemuth, J.G. Engbers, T. Lawo, J. Nebaznivy, M. Taborsky, et al.
Form analysis using digital signal processing reliably discriminates far-field R waves from P waves.
Pacing Clin Electrophysiol, 27 (2004), pp. 1615-1624
[52.]
A. Shalaby, S. Adler, S. Bailin, M. Bersohn, R. Reddy, S. Remole, et al.
Can novel digital signal processing technology enable successful device classification of atrial tachyarrhythmias? [resumen].
Heart Rhythm, 2 (2005), pp. S124
[53.]
D. Williams.
Medical nanotechnology. How small can we go?.
Med Device Technol, 13 (2002), pp. 7-9
Copyright © 2007. Sociedad Española de Cardiología
Idiomas
Revista Española de Cardiología

Suscríbase a la newsletter

Ver histórico de newsletters
Opciones de artículo
Herramientas