ISSN: 0300-8932 Factor de impacto 2023 7,2
Vol. 6. Núm. G.
Páginas 52G-62G (Septiembre 2006)

Tratamiento de las hiperlipemias en pacientes con riesgo cardiovascular elevado
Doble inhibición del colesterol: papel de la regulación intestinal y hepática

Dual Cholesterol Inhibition: Roles of Intestinal and Hepatic Regulation

Emilio Ros¿

Opciones

En pacientes con alto riesgo cardiovascular, la inhibición aislada de la síntesis de colesterol con estatinas no siempre consigue los objetivos terapéuticos, por lo que es deseable un método complementario para reducir el colesterol. Éste es la inhibición de la absorción intestinal, la segunda vía en la homeostasis del colesterol en el organismo. La regulación de la absorción intestinal del colesterol es una importante diana terapéutica, porque la eficiencia de este proceso determina tanto la excreción fecal como la cantidad que llega al hígado con los remanentes de quilomicrones. Tras su llegada al hígado, el colesterol de origen intestinal ejerce efectos reguladores importantes: inhibición variable de la síntesis de colesterol y expresión de receptores para las lipoproteínas de baja densidad (LDL). Esto se traduce generalmente en aumentos discretos de la colesterolemia en respuesta a una sobrecarga de colesterol en el intestino. La ezetimiba, un inhibidor selectivo de la absorción del colesterol, inactiva de forma reversible la acción de la proteína transportadora intestinal NPC1L1. Además de inhibir la absorción del colesterol, la ezetimiba reduce también la absorción de fitosteroles. Puesto que no se metaboliza por la vía del citocromo P450, la enzetimiba no presenta interacciones farmacocinéticas. La administración de 10 mg/día en monoterapia reduce un 50% la absorción de colesterol, lo cual se asocia con un descenso medio del cLDL de un 18%. El efecto hipocolesterolemiante de la ezetimiba es sinérgico con el de las estatinas, lo cual hace que esta combinación terapéutica sea actualmente de elección para lograr los objetivos de cLDL en la mayoría de pacientes con alto riesgo.

Palabras clave

Colesterol
Fitosteroles
Absorción intestinal
Fármacos hipolipemiantes
Ezetimiba
Este artículo solo puede leerse en pdf
Bibliografía
[1.]
Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention trial results. I.
Reduction in incidence of coronary heart disease.
JAMA, (1984), 251 pp. 351-354
[2.]
Lipid Research Clinics Program.
The Lipid Research Clinics Coronary Primary Prevention trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering.
JAMA, (1984), 251 pp. 365-373
[3.]
J.L. Goldstein, M.S. Brown.
Regulation of the mevalonate pathway.
Nature, (1990), 343 pp. 425-430
[4.]
A. Endo.
The discovery and development of HMG CoA reductase inhibitors.
J Lipid Res, (1992), 33 pp. 1569-1582
[5.]
D.J. Maron, S. Fazio, M.R.F. Linton.
Current perspectives on statins.
Circulation, (2000), 101 pp. 207-213
[6.]
S. Bellosta, R. Paoletti, A. Corsini.
Safety of statins: focus on clinical pharmacokinetics and drug interactions.
Circulation, (2004), 109 pp. III50-III57
[7.]
M.R. Law, N.J. Wald, A.R. Rudnicka.
Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis.
[8.]
D. Wood, G. De Backer, O. Faergeman, I. Graham, G. Mancia, K. Pyorala, et al.
Prevention of coronary heart disease in clinical practice: Recommendations of the Second Joint Task Force of European and other Societies on Coronary Prevention.
Atherosclerosis, (1998), 140 pp. 199-270
[9.]
Ministerio de Sanidad y Consumo, Sociedad Española de Cardiología y Sociedad Española de Arteriosclerosis. Control de la colesterolemia en España, 2000. Un instrumento para la prevención cardiovascular. Clin Invest Arterioscler. 2000;12:125-52
[10.]
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III).
JAMA, (2001), 285 pp. 2486-2497
[11.]
T.A. Pearson, I. Laurora, H. Chu, S. Kafonek.
The Lipid Treatment Assessment Project (L-TAP): a multicenter survey to evaluate the percentages of dyslipidemic patients receiving lipid-lowering therapy and achieving low-density lipoprotein cholesterol goals.
Arch Intern Med, (2000), 160 pp. 459-467
[12.]
EUROASPIRE II Study Group.
Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries: principal results from the EUROASPIRE II Euro Heart Survey Programme.
Eur Heart J, (2001), 22 pp. 554-572
[13.]
P. Jones, S. Kafonek, I. Laurora, D. Hunninghake, For the CURVES Investigators.
Comparative dose efficacy study of atorvastatin versus pravastatin, lovastatin and fluvastatin in patients with hypercholesterolemia (the CURVES Study).
Am J Cardiol, (1998), 81 pp. 582-587
[14.]
T.C. Andrews, C.M. Ballantyne, J.A. Hsia, J.H. Kramer.
Achieving and maintaining National Cholesterol Education Program lowdensity lipoprotein cholesterol goals with five statins.
Am J Med, (2001), 111 pp. 185-191
[15.]
S.M. Grundy, J.I. Cleeman, C.N.B. Merz, H.B. Brewer, L.T. Clark, D.B. Hunninghake, et al.
NCEP Report. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III Guidelines.
Circulation, (2004), 110 pp. 227-239
[16.]
J.A. Farmer.
Learning from the cerivastatin experience.
Lancet, (2001), 358 pp. 1383-1385
[17.]
G.R. Thompson, F. O’Neill, M. Seed.
Why some patients respond poorly to statins and how this might be remedied.
Eur Heart J, (2002), 23 pp. 200-206
[18.]
J.M. Dietschy, S.D. Turley, D.K. Spady.
Role of the liver in the maintenance of cholesterol and low-density lipoprotein homeostasis in different animal species, including humans.
J Lipid Res, (1993), 34 pp. 1637-1659
[19.]
E. Ros.
Intestinal absorption of triglyceride and cholesterol. Dietary and pharmacological inhibition to reduce cardiovascular risk.
Atherosclerosis, (2000), 151 pp. 357-379
[20.]
T. Sudhop, K. Von Bergmann.
Cholesterol absorption inhibitors for the treatment of hypercholesterolaemia.
Drugs, (2002), 62 pp. 2333-2347
[21.]
S.D. Turley, J.M. Dietschy.
Sterol absorption by the small intestine.
Curr Opin Lipidol, (2003), 14 pp. 233-240
[22.]
D.Y. Hui, P.N. Howles.
Molecular mechanisms of cholesterol absorption and transport in the intestine.
Sem Cell Developm Biol, (2005), 16 pp. 183-192
[23.]
F. Lammert, D.Q.-H. Wang.
New insights into the genetic regulation of intestinal cholesterol absorption.
Gastroenterology, (2005), 129 pp. 718-734
[24.]
S.M. Bosner, L.G. Lange, W.F. Stenson, R.E. Ostlund Jr.
Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry.
J Lipid Res, (1999), 40 pp. 302-308
[25.]
M.C. Carey, D.M. Small.
The characteristics of mixed micellar solutions with particular reference to bile.
Am J Med, (1970), 49 pp. 590-598
[26.]
R.E. Ostlund Jr.
Phytosterols in human nutrition.
[27.]
G. Salen, E.H. Ahrens Jr, S.M. Grundy.
Metabolism of betasitosterol in man.
J Clin Invest, (1970), 49 pp. 952-967
[28.]
T.A. Miettinen, R.S. Tilvis, Y.A. Kesaniemi.
Serum plant sterol and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population.
Am J Epidemiol, (1990), 131 pp. 20-31
[29.]
W.E. Connor, D.S. Lin.
Absorption and transport of shellfish sterols in human subjects.
Gastroenterology, (1981), 81 pp. 276-284
[30.]
G. Schmitz, T. Langmann, S. Helmerl.
Role of ABCG1 and other ABCG family members in lipid metabolism.
J Lipid Res, (2001), 42 pp. 1513-1520
[31.]
K.E. Berge, H. Tian, G.A. Graf, L. Yu, N.V. Grishin, J. Schultz, et al.
Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters.
Science, (2000), 290 pp. 1771-1775
[32.]
M.H. Lee, K. Lu, S. Hazard, H. Yu, S. Shulenin, H. Hidaka, et al.
Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.
Nat Genet, (2001), 27 pp. 79-83
[33.]
S.W. Altmann, H.R. Davis Jr, L.J. Zhu, X. Yao, L.M. Hoos, G. Tetzloff, et al.
Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption.
Science, (2004), 303 pp. 1201-1204
[34.]
H.R. Davis, L.J. Zhu, L.M. Hoos, G. Tetzloff, M. Maguire, J. Liu, et al.
Niemann-Pick C1 Like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole body cholesterol homeostasis.
J Biol Chem, (2004), 279 pp. 33586-33592
[35.]
E.D. Carstea, J.A. Morris, K.G. Coleman, S.K. Loftus, D. Zhang, C. Cummings, et al.
Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis.
Science, (1997), 277 pp. 228-231
[36.]
E.J. Smart, R.A. De Rose, S.A. Farber.
Annexin 2-caveolin 1 complex is a target of ezetimibe and regulates intestinal cholesterol transport.
Proc Natl Acad Sci USA, (2004), 101 pp. 3450-3455
[37.]
C. Joyce, K. Skinner, R.A. Anderson, L.L. Rudel.
Acyl-coenzyme A: cholesterol acyltransferase 2.
Curr Opin Lipidol, (1999), 10 pp. 89-95
[38.]
A. Chawla, J.J. Repa, R.M. Evans, D.J. Mangelsdorf.
Nuclear receptors and lipid physiology: opening the X-files.
Science, (2001), 294 pp. 1866-1870
[39.]
F.J. Field, N.T.P. Kam, S.N. Mathur.
Regulation of cholesterol metabolism in the intestine.
Gastroenterology, (1990), 99 pp. 539-551
[40.]
D.A. Gordon.
Recent advances in elucidating the role of the microsomal triglyceride transfer protein in apolipoprotein B lipoprotein assembly.
Curr Opin Lipidol, (1997), 8 pp. 131-137
[41.]
J.R. Wetterau, L.P. Aggerbeck, M.-E. Bouma, C. Eisenberg, A. Munck, M. Hernier, et al.
Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia.
Science, (1992), 258 pp. 999-1001
[42.]
D.J. McNamara, R. Kolb, T.S. Parker, H. Batwin, P. Samuel, C.D. Brown, et al.
Heterogeneity of cholesterol homeostasis in man: response to changes in dietary fat quality and cholesterol quantity.
J Clin Invest, (1987), 79 pp. 1729-1739
[43.]
P.J.H. Jones, A.S. Pappu, L. Hatcher, Z.-C. Li, D.R. Illingworth, W.E. Connor.
Dietary cholesterol feeding suppresses human cholesterol synthesis measured by deuterium incorporation and urinary mevalonic acid levels.
Arterioscler Thromb Vasc Biol, (1996), 16 pp. 1222-1228
[44.]
P. Hopkins.
Effects of dietary cholesterol on serum cholesterol: a meta-analysis and review.
Am J Clin Nutr, (1992), 55 pp. 1060-1070
[45.]
S.Q. Ye, P.O. Kwiterowich Jr.
Influence of genetic polymorphisms on responsiveness to dietary fat and cholesterol.
Am J Clin Nutr, (2000), 72 pp. 1275S-1284S
[46.]
K.E. Berge, K. Von Bergmann, D. Lutjohann, R. Guerra, S.M. Grundy, H.H. Hobbs, et al.
Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8.
J Lipid Res, (2002), 43 pp. 486-494
[47.]
K. Von Bergmann, D. Lutjohann, B. Lindenthal, A. Steinmetz.
Efficiency of intestinal cholesterol absorption in humans is not related to apoE phenotype.
J Lipid Res, (2003), 44 pp. 193-197
[48.]
H. Gylling, T.A. Miettinen.
Inheritance of cholesterol metabolism of probands with high or low cholesterol absorption.
J Lipid Res, (2002), 43 pp. 1472-1476
[49.]
A.S. Wierzbicki, E. Doherty, P.J. Lumb, G. Chik, M.A. Crook.
Efficacy of ezetimibe in patients with statin-resistant and statin-intolerant familial hyperlipidaemias.
Curr Med Res Opin, (2005), 21 pp. 333-338
[50.]
L. Brown, B. Rosner, W.W. Willett, F.M. Sacks.
Cholesterol-lowering effects of dietary fiber: a meta-analysis.
Am J Clin Nutr, (1999), 69 pp. 30-42
[51.]
J.T. Knuiman, A.C. Beynen, M.B. Katan.
Lecithin intake and serum cholesterol.
Am J Clin Nutr, (1989), 49 pp. 266-268
[52.]
A.H. Lichtenstein, R.J. Deckelbaum, For the American Heart Association Nutrition Committee. Stanol/sterol ester-containing foods and blood cholesterol levels. A statement for health professionals from the Nutrition Committee, American Heart Association.
Circulation, (2001), 103 pp. 1177-1179
[53.]
P. Samuel.
Treatment of hypercholesterolemia with neomycin - A time for reappraisal.
N Engl J Med, (1979), 301 pp. 595-597
[54.]
B. Mittendorfer, R.E. Ostlund Jr, B.W. Patterson, S. Klein.
Orlistat inhibits dietary cholesterol absorption.
Obes Res, (2001), 9 pp. 599-604
[55.]
D.A. Burnett, M.A. Caplen, H.R. Davis Jr, R.E. Burrier, J.W. Clader.
2-Azetidinones as inhibitors of cholesterol absorption.
J Med Chem, (1994), 37 pp. 1733-1736
[56.]
A.L. Catapano.
Ezetimibe: a selective inhibitor of cholesterol absorption.
Eur Heart J, (2001), 3 pp. E6-E10
[57.]
C. Ballantyne.
Ezetimibe: efficacy and safety in clinical trials.
Eur Heart J, (2002), 4 pp. J5-J15
[58.]
E. Bruckert, P. Giral, P. Tellier.
Perspectives in cholesterol-lowering therapy. The role of ezetimibe, a new selective inhibitor of intestinal cholesterol absorption.
Circulation, (2003), 107 pp. 3124-3128
[59.]
B.G. Salisbury, H.R. Davis Jr, R.E. Burrier, D.A. Burnett, G. Boykow, M.A. Caplen, et al.
Hypocholesterolemic activity of a novel inhibitor of cholesterol absorption, SCH 48461.
Atherosclerosis, (1995), 115 pp. 45-63
[60.]
M. Van Heek, H. Davis.
Pharmacology of ezetimibe.
Eur Heart J, (2002), 4 pp. J17-J20
[61.]
J.J. Repa, J.M. Dietschy, S.D. Turley.
Inhibition of cholesterol absorption by SCH 58053 in the mouse is not mediated via changes in the expression of mRNA for ABCA1, ABCG5 or ABCG8 in the enterocyte.
J Lipid Res, (2002), 43 pp. 1864-1874
[62.]
M. García-Calvo, J.M. Lisnocka, H.G. Bulla, B.E. Hawes, D.A. Burnett, M.P. Braun, et al.
The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1).
Proc Natl Acad Sci USA, (2005), 102 pp. 8132-8137
[63.]
M. Van Heek, C. Farley, D.S. Compton, L. Hoos, H.R. Davis.
Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function.
Br J Pharmacol, (2001), 134 pp. 409-417
[64.]
T. Sudhop, D. Lütjohann, A. Kodal, M. Igel, D.L. Tribble, S. Shah, et al.
Inhibition of intestinal cholesterol absorption by ezetimibe in humans.
Circulation, (2002), 106 pp. 1943-1948
[65.]
G. Salen, K. Von Bergmann, D. Lutjohann, P. Kwiterovich, J. Kane, S.B. Patel, Multicenter Sitosterolemia Study Group, et al.
Ezetimibe effectively reduces plasma plant sterols in patients with sitosterolemia.
Circulation, (2004), 109 pp. 966-971
[66.]
C.A. Dujovne, M.P. Ettinger, J.F. McNeer, L.J. Lipka, A.P. LeBeaut, R. Suresh, et al.
Efficacy and safety of a new selective cholesterol absorption inhibitor, ezetimibe, in patients with primary hypercholesterolemia.
Am J Cardiol, (2002), 90 pp. 1092-1097
[67.]
R.H. Knopp, H. Gitter, T. Truitt, H. Bays, C.V. Manion, L.J. Lipka, et al.
Effects of ezetimibe, a new cholesterol absorption inhibitor, on plasma lipids in patients with primary hypercholesterolemia.
Eur Heart J, (2003), 24 pp. 729-741
[68.]
M. van Heek, T.M. Austin, C. Farley, J.A. Cook, G.G. Tetzloff, H.R. Davis.
Ezetimibe, a potent cholesterol absorption inhibitor, normalizes combined dyslipidemia in obese hyperinsulinemic hamsters.
Diabetes, (2001), 50 pp. 1330-1335
[69.]
H.R. Davis, D.S. Compton, L. Hoos, G.G. Tetzloff.
Ezetimibe, a potent cholesterol absorption inhibitor, inhibits the development of atherosclerosis in apoE knockout mice.
Arterioscler Thromb Vasc Biol, (2001), 21 pp. 2032-2038
Copyright © 2006. Sociedad Española de Cardiología
¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?