Publish in this journal
Journal Information
Visits
Not available
Vol. 68. Issue 3.
Pages 198-204 (March 2015)
Artículo Original
DOI: 10.1016/j.rec.2014.10.003
Full text access
Valve Thrombosis Following Transcatheter Aortic Valve Implantation: A Systematic Review
Revisión sistemática de la trombosis protésica tras implante percutáneo de válvula aórtica
Visits
...
Juan G. Córdoba-Soriano, Rishi Puri, Ignacio Amat-Santos, Henrique B. Ribeiro, Omar Abdul-Jawad Altisent, María del Trigo, Jean-Michel Paradis, Eric Dumont, Marina Urena, Josep Rodés-Cabau
Corresponding author
josep.rodes@criucpq.ulaval.ca

Corresponding author: Quebec Heart & Lung Institute, Laval University, 2725 Chemin Ste-Foy, G1 V 4G5 Quebec City, Quebec, Canada.
Quebec Heart & Lung Institute, Quebec City, QC, Canada
This item has received
...
Visits
(Daily data update)
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (3)
Table 1. Baseline Demographic, Clinical and Procedural Characteristics
Table 2. Clinical Manifestations, Diagnostic Techniques and Echocardiographic Data
Table 3. Thrombosis Management and Clinical Outcomes
Show moreShow less
Abstract
Introduction and objectives

Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data.

Methods

Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search.

Results

A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation.

Conclusions

Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function.

Keywords:
Transcatheter aortic valve implantation
Valve thrombosis
Aortic valve stenosis
Abbreviations:
ASA
OAC
SAVR
TAVI
VT
Resumen
Introducción y objetivos

A pesar de la rápida extensión del implante transcatéter de válvulas aórticas, la trombosis protésica tras la intervención es una complicación grave que no se ha evaluado sistemáticamente. El objetivo de este estudio es determinar las características clínicas, los criterios diagnósticos y el manejo de la trombosis protésica tras implante percutáneo de válvula aórtica mediante revisión sistemática de los datos publicados hasta la fecha.

Métodos

Se identificaron, mediante búsqueda electrónica sistemática, todos los artículos publicados en 2002-2012 relacionados con trombosis protésica como complicación tras implante percutáneo de válvula aórtica.

Resultados

Se identificaron 11 publicaciones que describían a un total de 16 pacientes (media de edad, 80 ± 5 años; el 65% varones) con trombosis protésica subaguda. En todos los casos excepto 1 (94%), se utilizaron prótesis de tipo balón expandible. Todos los pacientes recibieron doble antiagregación inmediatamente después del procedimiento y continuaban recibiendo al menos un antiagregante en el momento del diagnóstico, que se realizó una mediana de 6 meses tras el implante. La disnea progresiva fue el síntoma más común de presentación. El principal hallazgo ecocardiográfico fue un incremento en los gradientes transvalvulares (media de 10 ± 4 mmHg tras el implante a 40 ± 12mmHg al diagnóstico), junto con el engrosamiento en las valvas. No se visualizaron directamente trombos mediante la ecocardiografía. En 3 casos la prótesis se sustituyó quirúrgicamente, mientras que el resto recibió warfarina, que consiguió un descenso efectivo de los gradientes en una mediana de 2 meses. No se produjeron embolias como consecuencia de la trombosis valvular tras implantación percutánea de la válvula.

Conclusiones

Aunque infrecuente y probablemente infracomunicada, ante la aparición de disnea progresiva junto con aumento de gradientes en los meses siguientes al implante transcatéter de válvula aórtica, se debe pensar en trombosis protésica. Aunque la visualización directa del trombo resulta difícil, la instauración precoz de anticoagulación oral puede restaurar de manera efectiva la función protésica.

Palabras clave:
Implante percutáneo de válvula aórtica
Trombosis protésica
Estenosis de válvula aórtica
Full Text
INTRODUCTION

Valve thrombosis (VT) following surgical valve replacement is a life-threatening complication largely involving mechanical prostheses and is commonly associated with subtherapeutic oral anticoagulation (OAC) therapy.1 Bioprosthetic surgical aortic valves rarely thrombose, with an estimated incidence of 0.01% to 1.26%.2–5 Transcatheter aortic valve implantation (TAVI) is an established treatment for severe symptomatic aortic stenosis among patients whose surgical complication risk is deemed prohibitive or high.6 While thromboembolic complications of TAVI, particularly periprocedural cerebrovascular events, are well described,7–9 little is known of the occurrence of VT following TAVI. To date, an estimated 150 000 TAVI procedures or more have been performed worldwide. However, data on this critical complication is currently limited to isolated case reports or small case series, precluding a more formal evaluation of its chief clinical characteristics, management strategies, and outcomes.10–22 The objective of this systematic review is to provide further insight into the baseline characteristics, clinical presentation, management, and outcomes of patients diagnosed with VT following TAVI.

METHODS

A comprehensive and systematic search of all English-language articles in PubMed, Google Scholar, Cochrane Library, and BioMedCentral addressing thrombosis as a complication of TAVI was performed using the following keywords: “transcatheter aortic valve”, “transcatheter prostheses”, “TAVI”, “transcatheter aortic valve replacement”, “thrombosis”, “thrombus”, “dysfunction”, “obstruction”, “degeneration”, “stenosis”. A manual search was also performed of the major TAVI-related trials and registries. All publications were retrieved and evaluated independently by 2 investigators (J.G. Córdoba-Soriano and I. Amat-Santos). Articles reporting thrombosis of transcatheter valves in nonaortic positions were excluded. The data gathered included baseline demographics and clinical characteristics, diagnostic imaging, antithrombotic therapies post-TAVI, treatment of VT per se, and clinical outcomes. Echocardiographic data included left ventricular ejection fraction, valve area and gradients, and the presence of paravalvular leaks.

Statistical Analysis

Categorical variables are reported as No. (%) and continuous variables as mean (standard deviation) or median according to variable distribution. All analyses were performed with SAS version 9.2 (SAS Institute Inc.; Cary, North Carolina, United States).

RESULTS

Thirteen reports describing 18 cases of thrombosis as a complication of TAVI were identified,10–22 including 2 individuals with periprocedural VT who are listed and described separately as “acute” VT.12,20

Table 1 describes the baseline and procedural characteristics of patients with VT post-TAVI. The mean age was 80 (5) years, with a male preponderance. Atrial fibrillation was not reported in any of the patients, and left ventricular ejection fraction was described in only 5 patients. Coagulopathy was tested in 10 patients (63%), one of whom had a 50% reduction in protein S activity and tested positive for cold agglutinins. Two patients had a prior history of stroke and 1 patient was receiving chronic OAC for prior pulmonary embolism. The absence of systemic inflamatory disease was highlighted in most patients and allergy to the prosthetic components was ruled out in 2 of them.

Table 1.

Baseline Demographic, Clinical and Procedural Characteristics

Patient  Age  Gender  STS/EuroSCORE  Risk factors  Valvulopathy  Type of valve, size (mm)  Approach  Antithrombotic treatmentTime from implantation 
                Postintervention  At the time of thrombosis   
110  84  Female  —/22%  Yesa  Severe AS  SAPIEN, 23  TA  ASA indefinitely, clopidogrel 6 months  Nob  6 months 
211  78  Male  —/44%  —  Severe AS  SAPIEN, 26  TA  ASA indefintely, clopidogrel 1 month  ASA  4 months 
313  83  Male  5%/30%  History of stroke  Severe AS  SAPIEN XT, 26  TF  ASA indefinitely, clopidogrel 6 months  ASA, clopidogrel  6 months 
413  81  Male  3.9%/11%  —  Severe AS  SAPIEN XT, —  TF  ASA, clopidogrel 3 months  ASA  15 months 
513  83  Male  17%/20%  History of stroke  Severe AS  SAPIEN XT, 26  TF  —  —  24 months 
614  80  Female  —/—  No  Severe AS  SAPIEN XT, 23  —  ASA, clopidogrel  ASA, clopidogrel  10 months 
714  81  Male  —/—  —  Bioprosthetic dysfunction  SAPIEN XT, 23  —  —  —  4 months 
814  74  Female  —/—  —  Severe AS  SAPIEN XT, 26  —  ASA, clopidogrel  —  2 months 
915  74  Female  18.7%/—  No  Severe AS  SAPIEN, 23  TFc  ASA < 2 week  No  2 weeks 
1016  86  Male  —/7%  No  Severe AS  CoreValve®, 26  —  ASA indefinitely, clopidogrel 3 months  ASA  6 months 
1117  86  Male  —  History of PE  Severe AS  SAPIEN XT, 29  —  ASA, clopidogrel  ASA, clopidogrel  1 week 
1218  81  Female  —/—  —  Severe AS  SAPIEN, 26  —  ASA  ASA  20 months 
1319  87  Male  15.6%/29%  No  Severe AS  SAPIEN XT, 29  TA  ASA indefinitely, clopidogrel 3 months  Clopidogreld  8 months 
1421  70  Male  —/—  —  Severe AS  SAPIEN XT, 26  TF  ASA indefinitely, clopidogrel 1 months  ASA  6 months 
1522  —  —  —/—  —  Severe AS  SAPIEN XT, 29  TA  UFH 5 days, ASA indefinitely, clopidogrel 12 months  ASA  3 months 
1622  —  —  —/—  —  Severe AS  SAPIEN XT, 29  TA  UFH 5 days, ASA indefinitely, clopidogrel 12 months  ASA  4 months 
Acute thrombosis cases
1712  66  Male  —/—  —  Severe AS  SAPIEN, 23  TF    UFH, ASA, clopidogrel  Acute 
1820  90  Male  17%/—  PAF  Severe AS  SAPIEN, 26  TF    UFH, ASA, clopidogrel  Acutee 

AS, aortic stenosis; ASA, acetylsalicylic acid; PAF, paroxysmal atrial fibrillation; PE, pulmonary embolism; STS, Society of Thoracic Surgeons; TA, transapical; TF, transfemoral; UFH, unfractionated heparin.

a

Mild reduction of protein S activity (50%) and positive cold agglutinins were detected.

b

The patient discontinued the treatment.

c

Performed across an iliac conduit.

d

Patient discontinued acetylsalicylic acid due to recurrent epistaxis.

e

Hydrophilic polymer embolism-induced acute thrombosis. Cardiac arrest 18 h following the procedure.

In all but 1 patient, TAVI was performed to treat severe native aortic valve stenosis; this patient underwent a valve-in-valve procedure for failure of a prior surgically-implanted prosthetic aortic valve. All but 1 patient underwent TAVI using a balloon-expandable Edwards SAPIEN valve (25% Edwards SAPIEN, 69% SAPIEN XT) (Edwards Lifesciences Inc.; Irvine, California, United States). One patient (6%) received a self-expandable CoreValve® (Medtronic; Minneapolis, Minnessota, United States). The implanted valve sizes ranged from 26mm in 47% of the patients to 23mm and 29mm in 20% and 27% of the patients, respectively. Post-TAVI echocardiography demonstrated a mean transvalvular gradient of 10 (4) mmHg and the presence of residual aortic regurgitation was reported in 4 patients (29%). All patients received antiplatelet therapy post-TAVI, with dual antiplatelet therapy (acetylsalicylic acid [ASA] + clopidogrel for 1-6 months) being the most frequent (86%) regimen. No patient received OAC post-TAVI. Valve thrombosis was eventually diagnosed at a median time of 6 (0.5- 24) months post-TAVI.

Table 2 describes the clinical presentation, diagnostic tests, and results of echocardiography at the time of presentation. Most patients experienced progressive dyspnea, and 2 patients presented with refractory heart failure. Infectious endocarditis was excluded in all patients. Upon presentation with VT, most (63%) patients were actively receiving antiplatelet therapy: ASA monotherapy, 6 patients (38%); ASA + clopidogrel, 3 patients (19%); clopidogrel monotherapy, 1 patient (6%). Two patients (13%) were not receiving antithrombotic treatment at the time of VT, and no data on antithrombotic treatment were available in a further 3 patients (19%). No patient was receiving OAC at the time of VT diagnosis.

Table 2.

Clinical Manifestations, Diagnostic Techniques and Echocardiographic Data

Patient  Clinical presentationDiagnostics techniquesEchocardiographic data
  Progressive dyspnea  NYHA class  Other  TTE  TEE  CT  Angio  ICE  LVEF  AR post-TAVI  Valve thickness  MG post-TAVI  MG at diagnosis  MG post- treatment 
110  Yes  —    Yes  Yes    Yes    —  No  Yes  17  40  — 
211  Yes  —  NSTEMI    Yes    Yes  Yes  30%  Trivial  Yes  —  —  — 
313  Yes  II    Yes  Yes        Normal  No  Yes  11  47  11 
413  Yes  II    Yes  Yes        Normal  Trivial  —  45  19 
513  Yes  III    Yes  Yes        Normal  Mild  —  37  13 
614  Yes  III    Yes  Yes        —  —  Yes  10  54  13 
714  Yes  III    Yes  Yes        —  —  Yes  15  51 
814  Yes  II    Yes  Yes        —  —  —  34 
915  Yes  III    Yes          59%  No  Yes  43  28 
1016  Yes  III    Yes  Yes  Yes      —  —  Yes  —  41  — 
1117  No  Asymptomatic    Yes  Yes      —  Trivial  Yes  —  — 
1218  Yes  —    Yes  Yes        —  —  Yes  —  53  10 
1319  Yes  III    Yes  Yes        60%  —  Yes  50 
1421  Yes  —  Angina    Yes  Yes      —  —  Yes  —  48 
1522  Yes  IV  Death      Yes      —  —  Yes  —  —  — 
1622  Yes  IV  Death      Yes      —  —  Yes  —  —  — 
Acute thrombosis cases
1712  No  —  Cardiac arrest    Yes          No  Yes    —  — 
1820  No  —  Cardiac arrest    Yes    Yes      —  —    —  — 

AR, aortic regurgitation; CT, computed tomography; ICE, intracardiac echo; LVEF, left ventricular ejection fraction; MG, mean gradient; NSTEMI, non—ST-segment elevation myocardial infarction; NYHA, New York Heart Association; TAVI, transcatheter aortic valve implantation; TTE, transthoracic echocardiography; TEE, transesophageal echocardiography.

Echocardiography revealed VT in most patients, characterized by an increase from baseline in transvalvular gradient (94% of patients), with a mean gradient at the time of VT diagnosis being 43 (12) mmHg. Additionally, increased valve thickness or restricted leaflet mobility was described in a number of patients, whereas direct echocardiographic visualization of thrombus in all patients appeared elusive. Computed tomography was performed in 5 patients, however, and revealed hypodense structures compatible with thrombus.

Table 3 describes the clinical management of VT. No patient underwent thrombolysis, and most patients (78%) received OAC therapy, with 3 patients undergoing surgical replacement. Concomitant antiplatelet therapy was reported in 4 patient. Mean transvalvular gradients were successfully reduced by OAC at a median time of 2 (1-10) months. A definitive diagnosis of VT was made in 5 patients following direct visualization at surgery or during post-mortem examination, whereas the remaining cases were considered VT following significant reductions in transvalvular gradients during OAC therapy.

Table 3.

Thrombosis Management and Clinical Outcomes

Patient  Management of thrombosisTreatment at dischargeTime to success, months  Hystopathologic confirmation 
  ASA  Clopidogrel  VKA  UFH  LMWH  Surgery  ASA  Clopidogrel  VKA     
110  —  —  —  —  —  Yes  —  —  —  —  Yes 
211  —  —  Yes  Yes  —  No  —  —  Yes  No 
313  Yes  Yes  Yes  —  —  No  Yes  Yes  Yes  No 
413  Yes  No  Yes  —  —  No  Yes  No  Yes  No 
513  —  —  Yes  —  —  No  —  —  —  No 
614  —  —  Yes  —  —  No  —  —  Yes  No 
714  —  —  Yes  —  —  No  —  —  Yes  No 
814  —  —  Yes  —  —  No  —  —  —  No 
915  —  —  —  —  —  Sí  Yes  No  Yes  —  Yes 
1016  —  —  —  —  —  Sí  —  —  —  —  Yes 
1117  —  —  No  —  —  Yes  —  —  Yes  2.5  No 
1218  —  —  Yes  —  Yes  No  —  —  Yes  10  No 
1319  Yes  No  Yes  Yes  No  No  Yes  No  Yes  No 
1421  Yes  Yes  Yes  —  —  No  Yes  Yes  Yes  No 
1522  —  —  —  —  —  No          Yes 
1622  —  —  —  —  —  No          Yes 
Acute thrombosis cases
1712  —  —  —  Yes  —  No          Yes 
1820  Yes  Yes  No  Yes  No  No          Yes 

ASA, acetylsalicylic acid; LMWH, low molecular weight heparin; UFH, unfractionated heparin; VKA, vitamin K antagonist.

Acute Valve Thrombosis Post-transcatheter Aortic Valve Implantation

Two cases of VT occurred acutely following transfemoral TAVI with a first-generation Edwards SAPIEN valve. Both patients had received preprocedural dual antiplatelet therapy in addition to periprocedural unfractionated heparin. One case involved preprocedural discontinuation of OAC, initially prescribed for low left ventricular ejection fraction pre-TAVI. Following valve implantation, echocardiography revealed thrombus adhering to the stent frame in each patient. In both patients, unfractionated heparin was continued and in 1 particular patient, attempts at manual thrombus aspiration proved unsuccessful.

DISCUSSION

Bioprosthetic valves are generally considered less thrombogenic than their mechanical counterparts, in many instances obviating the need for long-term OAC. Nevertheless, the risk of thromboembolic events is not insignificant, particularly within the first 3 months following surgical aortic valve replacement (SAVR).23,24 The incidence of VT following SAVR is estimated to range from 0.03 events per 100 patient years,25 with reports of a 15-year incidence of 0.37% to 26%.3,26 Since the inception of TAVI in 2002,27 and despite an estimated 150 000 procedures or more having now been performed worldwide, large-scale clinical trials and registries have formally reported a single VT case.28–38 Moreover, a number of isolated clinical descriptions of VT post-TAVI coupled with largely empiric peri- and post-procedural antithrombotic regimens following TAVI underscores the importance of a timely systematic review of this poorly described phenomenon.

Several pertinent findings have emerged from this systematic review:

  • Most VT cases occurred within 1 year after TAVI, with a median time of onset of 6 months.

  • Almost all patients described gradual onset of increasing dyspnea, with the absence of clinical embolism. Although direct thrombus visualization was not described with echocardiography, suggestive echocardiographic morphological features included reduced leaflet mobility, increased leaflet thickening, and progressively increasing transvalvular gradients.

  • A preponderance of VT cases post-TAVI occurred following balloon-expandable valve implantation.

  • Valve thrombus post-TAVI was successfully treated following prompt OAC therapy, effectively restoring transcatherer valve function and hemodynamic performance.

Clinical Presentation and Diagnostic Tools

Following the initial symptom relief after TAVI for severe aortic stenosis, increasing dyspnea coupled with a progressively rising transvalvular gradient was a near universal finding among patients with VT post-TAVI. These findings appear analagous to the nature and timing of VT post-SAVR utilizing bioprostheses.3–5 The median time following TAVI for the diagnosis of VT was 6 months, with most cases being diagnosed within 1-year post-TAVI. This compares with a peak incidence for surgically-implanted aortic bioprostheses occurring at 13 months to 24 months reported by Pislaru et al4 and a median time of 12 months post-SAVR reported by both Brown et al3 and Jander et al.39 The immediate implications of the present findings relate to promoting a heightened clinical awareness for the possibility of VT post-TAVI, particularly among patients with worsening dyspnea following TAVI. An important observation was that direct visualization of a valve-related thrombus seems not to be a requirement for diagnosis and management. Rather, in patients with an elevated (or rising) echocardiographic transvalvular gradient, the diagnosis of VT should be strongly suspected, rather than simply valve degeneration. Whilst computed tomography imaging may provide supportive visual evidence of thrombus, this should not preclude the initiation of OAC (at the expense of antiplatelet therapy) as an effective means of eradicating TAVI-related VT. Interestingly, transesophageal echocardiography seemed unable to clinch the diagnosis of VT in many of the reported cases.

Currently, no formal clinical criteria exist for diagnosing VT post-TAVI. Pislaru et al4 proposed, from their series of surgically implanted aortic bioprostheses, that an increase in transvalvular gradient of > 50% from baseline within 5 years following SAVR (in the absence of increased flow), coupled with the presence of thickened/immobile cusps (or the presence of an overt mobile mass) should signify the likely presence of VT.4 However, direct extrapolation of these criteria to the TAVI population without formal, prospective evaluation may be somewhat premature. Importantly, these criteria should not currently serve as a barrier for implementing OAC therapy in patients strongly suspected of having VT following TAVI.

Prevention and Management of Valve Thrombosis Post-transcatheter Aortic Valve Implantation

Following SAVR with a bioprosthetic valve, various treatment guidelines are concordant in recommending ASA or OAC therapy during the initial 3 months after surgery, followed by long-term ASA monotherapy.40,41 However clinical practice remains heterogenous,42–46 probably because such guidelines are essentially based on observational, retrospective data.23,24,47,48

Following TAVI, dual antiplatelet therapy (ASA + clopidogrel) is currently recommended and used in most centers, but the duration of clopidogrel varies widely among studies (ranging from 1 month to 6 months).49 This lack of consensus is reflected by the significant heterogeneity of post-TAVI antithrombotic management described among VT cases in the present review, whereby 57% of patients were receiving ASA monotherapy and 21% were receiving dual antiplatelet therapy at the time of VT diagnosis. Merie et al48 noted a reduced risk of thromboembolic events and cardiovascular death with OAC therapy in the immediate 6-month period following SAVR with bioprosthetic valves. Clinical guidelines stipulate that thromboembolic risk factors such as atrial fibrillation, left ventricular systolic dysfunction, prior thromboembolism, and a known hypercoagulable state are important reasons for considering OAC following surgical aortic bioprosthetic valve deployment.40,41 Six (38%) patients in the present VT post-TAVI cohort had risk factors for thrombosis. This highlights the importance of an individualized approach for post-TAVI thromboembolic prophylaxis. Future studies, such as the ongoing ARTE (Aspirin versus Aspirin Clopidogrel Following Transcatheter Aortic Valve Implantation) pilot trial (NCT01559298) should provide key data informing future large-scale, clinical trials.

While traditional definitive management strategies of VT following SAVR encompassed either repeat surgery or thrombolysis, these treatment options involve considerable risk.39,50,51 Most patients with TAVI-related VT were successfully managed with OAC therapy, and these patients experienced significant clinical and hemodynamic improvement, with normalization of transvalvular gradients after 2 months of OAC therapy. These findings appear analagous to the successful use of OAC therapy for treating VT in the bioprosthetic SAVR or mitral valve population.4,39,51 Collectively, these findings support the rationale for commencing OAC therapy in post-TAVI patients suspected to harbor VT, including those with progressive dyspnea, valve leaflet thickening, restricted leaflet mobility, and a progressively rising echocardiographic transaortic gradient. The duration of OAC, however, remains unclear and should be determined on an individual basis. In the event of OAC cessation, we recommend institution of dual antiplatelet therapy and frequent echocardiographic surveillance.

Differing Thrombosis Rates Across Balloon vs Self Expanding Transcatheter Aortic Valves

Most VT cases were reported following balloon-expandable valve implantation. Although it is difficult to determine the precise mechanisms underscoring these observations, it is likely that VT post-TAVI relates to the complex interplay of a number of patient-, procedural-, and valve-related phenomena. Both the Edwards SAPIEN and CoreValve® are stented pericardial valves incorporating bovine and porcine tissue, respectively.6,52 However, the stented-frame design and composition of each valve differs substantially; the CoreValve® is longer and nitinol-based compared with the shorter and stainless steel or cobalt-chromium-based Edwards SAPIEN valve. It is plausible that the metallic frame could serve as a nidus for thrombus, particularly until complete endothelization occurs, which could take up to 12 months or more.9,53,54 Additonally, the Edwards SAPIEN valve contains a polyethylene terephthalate skirt, designed to minimize paravalvular regurgitation, not present on the CoreValve®. Nevertheless, Ducci et al55 observed in vitro that both transcatheter aortic valve designs result in reduced sinus of Valsalva flow, contributing to relative blood stasis on the aortic side of the valve. Compounding these valve-related hemodynamic factors is the likely occurrence of native valve leaflet fissuring, perforation, and endothelial denudation following balloon dilatation prior to balloon-expandable TAVI, providing additional stimuli for a localized prothrombotic mileu.

Limitations

Several limitations of the current review warrant consideration. The present analysis is likely to be affected by reporting/publication bias, thus limiting an accurate estimation of the true incidence of VT after TAVI and its clinical characteristics. This furthermore precludes any meaningful conclusions of the differing rates of VT across balloon expandable vs self-expanding valve designs. An added degree of reporting bias is likely to be present in the large number of patients who died at varying time intervals following TAVI and who did not undergo formal diagnostic evaluation or post-mortem examination either prior to or following death. Additionally, other clinical associations (ie, atrial fibrillation, thrombophilias, etc) may not have been systematically reported or assessed. Despite this, the present systematic review serves as an original collective summary of an important, preventable, and treatable complication following TAVI.

CONCLUSIONS

As the global uptake of TAVI for treating severe aortic stenosis remains exponential, rare complications of this evolving treatment paradigm will continue to be encountered more frequently. Given the present uncertainty of the optimal peri- and post-procedural antithrombotic regimen during TAVI, clinicians should have a heightened awareness of VT following TAVI. The direct visualization of thrombus is not necessary for a diagnosis of VT following TAVI. Rather, in patients with progressive dyspnea and a rising echocardiographic transaortic gradient, OAC therapy may be an effective means of restoring normal valve function.

CONFLICTS OF INTEREST

J. Rodés-Cabau and E. Dumont are consultants for Edwards Lifesciences. J.G. Córdoba-Soriano received support from Abbot Vascular and Fundación Biotyc, Albacete, Spain.

References
[1]
J.C.J. Sun, M.J. Davidson, A. Lamy, J.W. Eikelboom.
Antitrombotic management of patients with prosthetic heart valves: current evidence and future trends.
Lancet., 374 (2009), pp. 565-576
[2]
K.E. Hammermeister, G.K. Sethi, W.G. Henderson, C. Oprian, T. Kim, S. Rahimtoola.
A comparison of outcomes in men 11 years after heart-valve replacement with a mechanical valve or bioprosthesis.
N Engl J Med., 328 (1993), pp. 1289-1296
[3]
M.L. Brown, S.J. Park, T.M. Sundt, H.V. Schaff.
Early thrombosis risk in patients with biologic valves in the aortic position.
J Thorac Cardiovasc Surg., 144 (2012), pp. 108-111
[4]
S.V. Pislaru, I. Hussain, P.A. Pellikka, J.J. Maleszewski, R.D. Hanna, H.V. Schaff, et al.
Misconceptions, diagnostic challenges and treatment opportunities in bioprosthetic valve thrombosis: lessons from a case series.
Eur J Cardiothorac Surg., (2014),
[5]
N. Dürrleman, M. Pellerin, D. Bouchard, Y. Hébert, R. Cartier, L.P. Perrault, et al.
Prosthetic valve thrombosis: twenty-year experience at the Montreal Heart Institute.
J Thorac Cardiovasc Surg., 127 (2004), pp. 1388-1392
[6]
J. Rodes-Cabau.
Transcatheter aortic valve implantation: current and future approaches.
Nat Rev Cardiol., 9 (2011), pp. 15-29
[7]
L. Nombela-Franco, J.G. Webb, P.P. De Jaegere, S. Toggweiler, R.G. Nuis, A.E. Dager, et al.
Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation.
Circulation., 126 (2012), pp. 3041-3053
[8]
H. Eggebrecht, A. Schmermund, T. Voigtländer, P. Kahlert, R. Erbel, R.H. Mehta.
Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients.
EuroIntervention., 8 (2012), pp. 129-138
[9]
J.P. Fanning, D.L. Walters, D.G. Platts, E. Eeles, J. Bellapart, J.F. Fraser.
Characterization of neurological injury in transcatheter aortic valve implantation. How clear is the picture?.
Circulation., 129 (2014), pp. 504-515
[10]
T. Trepels, S. Martens, M. Doss, S. Fichtlscherer, V. Schächinger.
Thrombotic restenosis after minimally invasive implantation of aortic valve stent.
Circulation., 120 (2009), pp. e23-e24
[11]
J. Kefer, P. Astarci, J. Renkin, D. Glineur, S. Pierard, S. Seldrum, et al.
Thrombotic aortic restenosis after transapical Sapien valve implantation.
Circ Cardiovasc Interv., 3 (2010), pp. 289-292
[12]
E.L.W. Tay, R. Gurvitch, N. Wijeysinghe, F. Nietlispach, D. Wood, M. Allard, et al.
Valve thrombosis after transcatheter heart valve implantation.
EuroIntervention., 7 (2011), pp. 170-171
[13]
A. Latib, D. Messika-Zeitoun, F. Maisano, D. Himbert, E. Agricola, E. Brochet, et al.
Reversible Edwards Sapien XT dysfunction due to prosthesis thrombosis presenting as early structural deterioration.
J Am Coll Cardiol., 19 (2013), pp. 787-789
[14]
L. Cota, E. Stabile, M. Agrusta, G. Sorropago, A. Pucciarelli, V. Ambrosini, et al.
Bioprostheses “thrombosis” after transcatheter aortic valve replacement.
J Am Coll Cardiol., 19 (2013), pp. 789-791
[15]
K.L. Greason, V. Mathew, M.E. Sarano, J.J. Maleszewski, R.M. Suri, C.S. Rihal.
Early transcatheter aortic valve thrombosis.
J Card Surg., 28 (2013), pp. 264-266
[16]
P. Lancelloti, M.A. Radermecker, S.H. Weisz, V. Legrand.
Subacute transcatheter CoreValve thrombotic obstruction.
Circ Cardiovasc Interv., 6 (2013), pp. e32-e33
[17]
G. Pache, P. Blanke, W. Zeh, N. Jander.
Cusp thrombosis after transcatheter aortic valve replacement detected by computed tomography and echocardiography.
Eur Heart J., 34 (2013), pp. 3546
[18]
A. Orbach, B. Karkabi, A. Shiran.
Reversible restenosis after transcatheter aortic valve implantation.
Eur Heart J Cardiovasc Imaging., 15 (2014), pp. 350
[19]
A. Pergolini, P.G. Pino, G. Zampi, V. Polizzi, F. Musumeci.
Thrombotic aortic restenosis after transapical SAPIEN valve implantation.
J Card Surg., 29 (2014), pp. 204-208
[20]
S. Sanon, J.J. Maleszewski, S.R. Charanjit.
Hydrophilic embolism induced acute transcatheter aortic valve thrombosis: a novel complication.
Catheter Cardiovasc Interven., 83 (2014), pp. 1152-1155
[21]
F.S. De Brito Jr., A.M. Caixeta, M.L. Vieira, G. Nomura, G.L. Figueiredo, M. Perin, et al.
Pseudo early degeneration of a transcatheter aortic valve prosthesis due to thrombosis.
EuroIntervention., (2014),
[22]
T.H. Leetmaa, S.H. Poulsen, B.L. Norgaard, K.E. Klaaborg, K. Terp, S. Hoyer, et al.
Two cases of thrombotic stenosis in SAPIEN XT valves after transapical implantation.
EuroIntervention., 10 (2014), pp. 270
[23]
M. Heras, J.H. Chesebro, V. Fuster, W.J. Penny, D.E. Grill, K.R. Bailey, et al.
High risk of thromboemboli early after bioprosthetic cardiac valve replacement.
J Am Coll Cardiol., 25 (1995), pp. 1111-1119
[24]
M.I. Mydin, G. Dimitrakakis, J. Younis, J. Nowell, T. Athanasiou, A. Korliouros.
Optimal thromboprophylaxis following bioprosthetic aortic valve replacement: still a matter of debate?.
Interact Cardiovasc Thorac Surg., 15 (2012), pp. 109-114
[25]
J.P. Puvimanasinghe, E.W. Steyerberg, J.J. Takkenberg, C. Eijkemans, L.A. Van Herwerden, A.J. Bogers, et al.
Prognosis after aortic valve replacement with a bioprosthesis: predictions based on meta-analysis and microsimulation.
Circulation., 103 (2001), pp. 1535-1541
[26]
K. Hammermeister, G.K. Sethi, W.G. Henderson, F.L. Grover, C. Oprian, S.H. Rahimtoola.
Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the Veterans Affairs randomized trial.
J Am Coll Cardiol., 36 (2000), pp. 1152-1158
[27]
A. Cribier, H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, et al.
Percutaneous transcatheter implantation of an aortic valve prosthesis for calcified aortic stenosis: first human case description.
Circulation., 106 (2002), pp. 3006-3008
[28]
M.B. Leon, C.R. Smith, M. Mack, D.C. Miller, J.W. Moses, L.G. Svensson, PARTNER Trial Investigators, et al.
Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.
N Engl J Med., 363 (2010), pp. 1597-1607
[29]
C.R. Smith, M.B. Leon, M.J. Mack, D.C. Miller, J.W. Moses, L.G. Svensson, PARTNER Trial Investigators, et al.
Transcatheter versus surgical aortic-valve replacement in high-risk patients.
N Engl J Med., 364 (2011), pp. 2187-2198
[30]
T. Lefevre, A.P. Kappetein, E. Wolner, P. Nataf, M. Thomas, V. Schächinger, et al.
One year follow-up of the multi-centre European PARTNER transcatheter heart valve study.
Eur Heart J., 32 (2011), pp. 148-157
[31]
J. Rodés-Cabau, J.G. Webb, A. Cheung, J. Ye, E. Dumont, C.M. Feindel, et al.
Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk acute and late outcomes of the multicenter Canadian experience.
J Am Coll Cardiol., 55 (2010), pp. 1080-1090
[32]
M. Gilard, H. Eltchaninoff, B. Lung, P. Donzeau-Gouge, K. Chevreul, J. Fajadet, et al.
Registry of transcatheter aortic-valve implantation in high-risk patients.
N Engl J Med., 366 (2012), pp. 1705-1715
[33]
H. Jilaihawi, T. Chakravarty, R.E. Weiss, G.P. Fontana, J. Forrester, R.R. Makkar.
Meta-analysis of complications in aortic valve replacement: comparison of Medtronic-CoreValve. Edwards-Sapien and surgical aortic valve replacement in 8,536 patients.
Catheter Cardiovasc Interv., 80 (2012), pp. 128-138
[34]
S.K. Kodali, M.R. Williams, C.R. Smith, L.G. Svensson, J.G. Webb, R.R. Makkar, et al.
Two-year outcomes after transcatheter or surgical aortic-valve replacement.
N Engl J Med., 366 (2012), pp. 1686-1695
[35]
M. Thomas, G. Schymik, T. Walther, D. Himbert, T. Lefèvre, H. Treede, et al.
One-year outcomes of cohort 1 in the Edwards SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) registry: the European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve.
Circulation., 124 (2011), pp. 425-433
[36]
N.E. Moat, P. Ludman, M.A. De Belder, B. Bridgewater, A.D. Cunningham, C.P. Young, et al.
Long-term outcomes after transcatheter aortic valve implantation in high-risk patients with severe aortic stenosis. The U.K. TAVI (United Kingdom Transcatheter Aortic Valve Implantation) Registry.
J Am Coll Cardiol., 58 (2011), pp. 2130-2138
[37]
A. Linke, P. Wenaweser, U. Gerckens, C. Tamburino, J. Bosmans, S. Bleiziffer, et al.
Treatment of aortic stenosis with a self-expanding transcatheter valve: the International Multi-centre ADVANCE Study.
Eur Heart J., 35 (2014), pp. 2672-2684
[38]
D.H. Adams, J. Popma, M.J. Reardon, S.J. Yakubov, J.S. Coselli, M. Deeb, U.S. CoreValve Clinical Investigators, et al.
Transcatheter aortic-valve replacement with a self-expanding prosthesis.
N Engl J Med., 370 (2014), pp. 1790-1798
[39]
N. Jander, R.P. Kienzle, G. Kayser, F.J. Neumann, C. Gohlke-Baerwolf, J. Minners.
Usefulness of phenprocoumon for the treatment of obstructing thrombus in bioprostheses in the aortic valve position.
Am J Cardiol., 109 (2012), pp. 257-262
[40]
R.A. Nishimura, C.M. Otto, R.O. Bonow, E.A. Carabello, J.P. Erwin, R.A. Guyton, ACC/AHA Task Force Members, et al.
2014 AHA/ACC Guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines.
Circulation., 129 (2014), pp. 2440-2492
[41]
A. Vahanian, O. Alfieri, F. Andreotti, M.J. Antunes, G. Barón-Esquivias, H. Baumgartner, et al.
Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS).
Eur Heart J., 33 (2012), pp. 2451-2496
[42]
F.M. Cáceres-Loriga, H. Pérez-López, S. Santos-Gracia, K. Morlans-Hernandez.
Prosthetic heart valve thrombosis: pathogenesis, diagnosis and management.
Int J Cardiol., 110 (2006), pp. 1-6
[43]
A. Colli, J.P. Verhoye, R. Heijmen, J.T. Strauch, J.A. Hyde, D. Pagano, et al.
Antithrombotic therapy after bioprosthetic aortic valve replacement: ACTION Registry survey results.
Eur J Cardiothorac Surg., 33 (2008), pp. 531-536
[44]
J.M. Brennan, K.P. Alexander, A. Wallace, A.B. Hodges, J.C. Laschinger, K.W. Jones, et al.
Patterns of anticoagulation following bioprosthetic valve implantation: observations from ANSWER.
J Heart Valve Dis., 21 (2012), pp. 78-87
[45]
T.M. Sundt, K.J. Zehr, J.A. Dearani, R.C. Daly, C.J. Mullany, C.G.A. McGregor, et al.
Is early anticoagulation with warfarin necessary after bioprosthetic aortic valve replacement?.
J Thorac Cardiovasc Surg., 129 (2005), pp. 1024-1031
[46]
R. Roudaut, K. Serri, S. Lafitte.
Thrombosis of prosthetic heart valves: diagnosis and therapeutic considerations.
Heart., 93 (2007), pp. 137-142
[47]
J.M. Brennan, F.H. Edwards, Y. Zhao, S. O’Brien, M.D. Booth, R.S. Dokholyan, et al.
Early anticoagulation of bioprosthetic aortic valves in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database.
J Am Coll Cardiol., 60 (2012), pp. 971-977
[48]
C. Merie, L. Kober, P. Skov Olsen, C.H. Andersson, G. Gislason, J.S. Jensen, et al.
Association of warfarin therapy duration after bioprosthetic aortic valve replacement with risk of mortality, thromboembolic complications, and bleeding.
JAMA., 308 (2012), pp. 2118-2125
[49]
J. Rodés-Cabau, H.L. Dauerman, M.G. Cohen, R. Mehran, E.M. Small, S.S. Smyth, et al.
Antithrombotic treatment in transcateheter aortic valve implantation. Insigths from cerebrovascular and bleeding events.
J Am Coll Cardiol., 62 (2013), pp. 2349-2359
[50]
G. Huang, H.V. Schaff, T.M. Sundt, S.H. Rahimtoola.
Treatment of obtructive thrombosed prostetic heart valve.
J Am Coll Cardiol., 62 (2013), pp. 1731-1736
[51]
A. Butnaru, J. Shaheen, D. Tzivoni, R. Tauber, D. Bitran, S. Silberman.
Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due to thrombus formation.
Am J Cardiol., 112 (2013), pp. 1439-1444
[52]
H. Mohammadi, K. Mequanint.
Prosthetic aortic heart valves: modeling and design.
Med Eng Phys., 33 (2011), pp. 131-147
[53]
E.L. Tay, R. Gurvitch, N. Wijesinghe, F. Nielispach, D. Wood, A. Cheung, et al.
A high-risk period for cerebrovascular events exists after transcatheter aortic valve implantation.
JACC Cardiovasc Interv., 4 (2011), pp. 1290-1297
[54]
A. Linke, R. Höllriegel, T. Walther, K. Schierle, C. Wittekind, J. Ender, et al.
Ingrowths of a percutaneously implanted aortic valve prosthesis (CoreValve) in a patient with severe aortic stenosis.
Circ Cardiovasc Interv., 1 (2008), pp. 155-158
[55]
A. Ducci, S. Tzamtzis, M.J. Mullen, G. Burriesci.
Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI).
J Heart Valve Dis., 22 (2013), pp. 688-696
Copyright © 2014. Sociedad Española de Cardiología
Idiomas
Revista Española de Cardiología (English Edition)

Subscribe to our newsletter

Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

es en
Política de cookies Cookies policy
Utilizamos cookies propias y de terceros para mejorar nuestros servicios y mostrarle publicidad relacionada con sus preferencias mediante el análisis de sus hábitos de navegación. Si continua navegando, consideramos que acepta su uso. Puede cambiar la configuración u obtener más información aquí. To improve our services and products, we use "cookies" (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.